版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Gartner
Webinars
Gartnerdeliversactionable,objective
insight,guidanceandtoolstoenable
strongerperformanceonyour
organization’smissioncriticalpriorities
Enhanceyourwebinarexperience
Aska
Question
Download
Attachments
Watch
Again
2
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
ConnectwithGartner
GetStartedonYourGenerativeAI
Journey(APAC)
AlbertGauthier
SrDirectorAnalyst
RESTRICTEDDISTRIBUTION
3
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
WhatisArtificialIntelligence
?AIin2023describesstatisticalanalysisthathasbeenaroundfor50years.
?Setoftoolswrappedaroundto“tune”thestatisticalanalysis.
?Asrawcomputingcapabilitiesimprove,theabilitytoquicklyanalyzelargedatasetsandmodifythosedatasetshasimproved.
?ArtificialIntelligenceisthe“l(fā)atest”descriptionofoldtechnologies.
?CurrentMLisbasedalmostexclusivelyonStatisticalAnalysistofindpatterns
?Notintelligent.
4
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
Distinctions
?Theterm“AI”hasbeenusedtodescribemanythings.
–NLP(Alexa,Google)
–Linear/PolynomialRegressionAnalysis
–Probability
–NeuralNetworks(RemembertheTerminator)
–MachineLearning
–Stochasticbasedmodels(LLMincludingChatGPT)
5
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
UtopianandDystopianViewsofAI-Orthis.
6
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
TheHypeofGenerativeAI
?Headline:
HowgenerativeAIisrevolutionizingthefutureofsmartcities
?“Inconclusion,generativeAIhasthepotentialtorevolutionizethewayweplan,develop,andmanagesmartcities.Byprovidinginsightsintocitizenbehavior,trafficpatterns,andenvironmentalfactors,generativeAIcanhelpcitiesbecomemoreefficient,sustainable,andaccessible.”
RESTRICTEDDISTRIBUTION
7?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
WhataboutChatGPTandotherLLM?
?ChatGPTisa“LargeLanguageModel”(LLM)orFoundationalMachineLearningModel.OriginalmodelsbuiltonStochastics(somecallthestochasticparrots).
?ConversationalchatbotwithGenerativePretrainedTransformer(GPT).
?Is“generative”AImeaning,itcraftsaresponsewith“new”contentandtriestoformatitintonaturallanguage.
?(Stochasticsisthestudyofdatasetswithrandomprobabilitydistributionsthatcanbeanalyzedstatisticallybutnotpredicted.)Duetotheuncertaintypresentinastochastic
model,theresultsprovideanestimateoftheprobabilityofvariousoutcomes.
?Interesting,entertainingandwrappedinalotofhype(anyonerememberthemetaverse).
?GARTNER:IsChatGPTartificialgeneralintelligence?No.
RESTRICTEDDISTRIBUTION
8?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
StochasticModelling-5to95%probability
9
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
Howdoesitwork?
?Classifies“intent”likeAlexaorGooglewithconfidencescores(statistics)BUTusingstochastic-likeanalysis.
?Produces“constraints”toboundtheresponse.
?Trainedwithupto300BillionWordsfromvarioussources.
?Cansummarizeresponseswithmarginaldegreesofaccuracy(usecautiously)conditionaluponinput.
?Modelsarefine-tunedbyyourfeedback(unlessyouusetheAPI)
?Generatesoutputsbasedontrainedfoundationalmodels(i.e.Ifthemodelisnottrainedinaparticulararea,itdoesn’twork).
?Usesprobabilityanalysis.
?Determinethebest(mostprobable)pathbasedonyourinput.
RESTRICTEDDISTRIBUTION
10?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
Morespecifically,modelstrengthsinclude
?Generateandaugmentproseornarratives
?Codedevelopment,translation,explanationandaugmentation
?Summarizeandsimplifylong-formtexts.
?Classifycontentforsentimentorbytopicarea.
?Answerquestions,
?Translateandconvertlanguage(includingprogramminglanguages).
?Writtencontentaugmentationandcreation.
11
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
Whatitisn’t
?Accuratemuchofthetime.
?Equallystrongacrossalldomains…onlywhereit’strained.
?Sentient(Perceptive)…itisnotAI
?Insightfuli.e.)Givesyouthesameanswerifyouaskhowtobuildahigh-performanceteamofplumbersorbrain-surgeons.
?Reliable&Trustworthy(ieRequiresexpertreview).
?Abletobecustomizedortrainedwithyourdata.
?Notparticularlyinsightfulmuchofthetime.Regurgitatesprescribedpathsthroughthemodel.
12
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
Salesandmarketing:Engagewithpotentialcustomers
onawebsiteorinachatbot,andprovide
recommendationsandproductdescriptions.
HR:Createinterviewquestions,writeofferlettersandjobdescriptions,summarizeemployeesurveyresultsand
suggestemployeeengagementactivities.
Customerservice:Improvecustomer-facingchatbotbreadthandquality,effectivelyrespondtocustomerinquiriesand
complaints,andgeneratepersonalizedresponses.
Softwareprogramming:Generatecomputercodefromprose,convertcodefromoneprogramminglanguagetoanother,correcterroneouscodeandalsoexplaincode.
PopularUseCasesofChatGPT
ChatGPTCapabilities
?Createwrittencontent.
?Answerquestions(noncomputational)anddiscoverinformation.
?Transformthetone,formalityorwriting
genreoflanguageonrequest.
?Summarizeandclassifytext.
?Compareparagraphsandcorrect
grammar.
?Generateideas,suggestionsandkeypointsondifferenttopics.
?Classifyandcategorizecontentbasedontheexampleprovided.
?Generate,translate,explainandverifycomputercode.
?Translatetexttoinstructions,queryordifferentlanguage.
RESTRICTEDDISTRIBUTION
13?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
SelectEnterpriseUseCasesofChatGPT
Legalandcompliance:Draftandsummarizelegaldocuments,andcreatedraftcompliancepoliciesandtrainingmaterial.
Gartner’sGenerativeAIDefinition:
?Createsnewlyderivedcontent,strategies,designsandmethods.
?Learnsfromlargerepositoriesoforiginalsourcecontent.
RisksExecutivesShouldbeWatching
ΔHallucinations
ΔNoAttribution
ΔDataLeakage
WhatExactlyisGenAIinaProfessionalContext?
GenAICreates&LearnsWhatUseCasesAreEmergingforCXOs?
GartnerUseCasePrismforGenerativeAI
Gartner’sAIDefinition:
?Analyzesdatawithlogic-basedtechniqueslikeMachinelearning(ML)
?Interpretsevents,supportsandautomatedecisions(carefulhere).
14
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
KeyIssueTake-Away:
Foundationmodelsrepresentahugestep
changeinthefieldofAI,duetotheirmassivepretraining,whichmakesthemeffectiveat
few-shotandzero-shotlearning,enablingthemtobeversatile.
15
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
But…
?Toomanyorganizationsarejumpingintothetechnologywithoutunderstandingtheproblemandtheusecase
?ThisisgoingtocreatefailedPOCs
?Manyorganizationshaveasolutionlookingforaproblem.
?Drivenbyleadershipandthehypecycle.
?Havecompletemisunderstandingofhowthemodelsarebuilt,usecasesandlimitation.
16
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
GettingStartedinGenAIPilot
?Whatisyourusecase?
?WillOOTBmodelsuffice?
–PromptEngineering&TokenFiltering?
–ModelSelection?
–TextBasedUI(ChatGPT)
–API’sandApplicationEmbedding.
?IsModelAugmentationrequired?
–ModelSelection?
–ModelTraining,TestingandFeedback?
-APIsusedforTraining?
17
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
ShareableSummary
KeyFindings
?Themostsuccessfulpilotsfocusondemonstratingbusinesspotential,notontechnical
feasibility.OrganizationstendtoruntechnicaIpilotsthatsimplydemonstratethatitis
possibletobuildsomethingwithgenerativeAI,leadingtoonlyincrementalimprovementsandignoringthetransformativepotentialofthistechnology.
?ITleadersstruggletoidentifyandprioritizeimpactfulgenerativeAIusecasesduetothebroadandemergingnatureofthetechnology.
?MatureAIorganizationsinvolvebusinesspartnersandsoftwareengineersaskeymembersoftheirAIprojectsandpilotteams.
ViewDocument
RESTRICTEDDISTRIBUTION
18?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
?2023GartnerInc.and/oritsaffiliates.Allrightsreserved.
TextGeneration,Q&A,Summarization,Search,Classification,EntityExtraction,IntentRecognition,Translation,Rewrite,
TexttoSpeech
TexttoImage,ImageClassification,ObjectDetection,VideoClassification,ImagetoText
TexttoCode,CodeCompletion
?DrugDiscovery,GenomicSequencing,ChemicalFormulation
?Human-RobotInteraction
UseCasesforFoundationModels
NLP
ComputerVision
SoftwareEngineering
GeneralSciences
&Others
RESTRICTEDDISTRIBUTION
19?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
EnterpriseChatGPT/GPTUsageAreas:ProsandCons
Out-of-the-BoxModelUsage
?UsesChatGPTservice“asis,”nodirectaccesstoGPT-3.5model.
?Pro:Fasttomarket;limitedinvestments;gainexperience.
?Con:Limiteddifferentiation;controlrangeislimited.
Prompt
Engineering/
?Usestoolstocreate,tune,andevaluatepromptinputsandoutputs.
?Pro:BettertargetedChatGPTandGPT3results;lowstartupcosts.
InContextLearnigCon:Mustintegratewithbusinesssystemstointroducedata.
Deployment/FineTuningofCustom
Models
?Uses(builds/finetunes/licenses)GPTorotherlanguagemodelsdirectly.
?Pro:Customizedoroptimizedmodels,data,parametersandtuning.
?Con:Requiresaddedfundingandskills.ThisisnotChatGPT.
20
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
Out-of-the-BoxModelUsage
?Thisformofusageisbyfarthemostaccessibleandcommontoday.
?Text-basedwebchatinterface().APIrecentlyavailable.
?Formostusecases,outputmustbereviewedbyahuman,asitmaycontaininaccuraciesorunacceptablecontent.
?Enterprisesmayachieveusefulresultswithlimitedinvestmentsandskills.Butbecausemanyusersareinexperienced,theyriskoverlookingdata,securityandanalyticsrisks.
?Alimitationisthatthemodelcannotincludereal-time,currentorcustomdata.Nordoesitcoverrecenthistoricalevents(thoseafterDecember2021).However,newdatacanbeaddedviaa
promptatthetimeofinteraction.
21
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
PromptEngineering/InContextLearning
?PromptengineeringcanbeappliedtobothChatGPTandGPTusecases.Itinvolvesdevelopingasystematicapproachtocreating,tuning,andevaluatingresultsintermsofinputsandoutputstoandfromChatGPT.
?InChatGPT,thepromptisthecriticalelementdrivingresults.Smallchangestoaprompt’schoiceofwordsandwordordercanresultinsignificantchangesinoutput.Apromptcanalsocontain
datathatshouldbeincorporatedorconsideredwhengeneratingaresponse.
?Leadersshouldanticipatethatpromptengineeringisanewtechnicalskillthatwillneedtobedeveloped,alongwithrelatedtools.
?Insomecases,thisrequirementwillextendtobuildingaseparatelearningmodeltooptimizeprompts.
?InContextLearning,leveragingRetrievalAugmentedGeneration,isthedominantmodelinusebyorganizationsthatmustkeepdatasecureandregularlyupdatedatainanLLMcontext
22
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
Deployment/FineTuningofCustomModels
?Thisisthelikelylong-termapproachforsophisticatedsolutions.
?ThisapproachisnotpossiblewithChatGPT,asitdoesnotprovideuserswithaccesstocustomizeitsunderlyingmodel.
?BesidesGPT,otherfoundationmodelsexist.Somearespecialized.
?Customizingfoundationmodelsisacomplextaskthatrequiressignificantskills,datacurationandfunding.
?Enterprisesshouldanticipatearobustmarketforthird-partymodelscustomizedfordifferentusecases.
?Plannersshouldanticipatetheemergenceofthird-party,fit-for-purpose,specializedmodels.Buyingoneofthesemayproveabetterapproachformanyenterprisesthancustomizingamodelthemselves.
?Applicationsmayalsohaveprebuiltmodelsfortheirusers.
23
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
ViewDocument
RESTRICTEDDISTRIBUTION
24
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
5
?2023GartnerInc.and/oritsaffiliates.Allrightsreserved.
VALUE
●Benefits:
○Thesimplicityandversatilityofthisdesignpattern—ageneralpurposenaturallanguagegenerationtool—makesithighvaluein
complementingworkflowsoflanguageandsoftwareproduction.
●Drawbacks:
○Riskofincorrectorbiasedoutputs,requiringhumanqualitycontrolofgeneratedresponse.
○PotentialprivacyriskswhensharingIPorconfidentialinformation.
USECASES
●Codegeneration
●Ideageneration/brainstorming
●Copywriting/contentcreation
●Generalknowledgediscovery/search
●Basictranslation/NLPtasks
UseLLMs“As-Is”
Prompt
Response
SimplePrompt
User
LLM
Prompt+Content
Response
PromptWithContent
User
LLM
VALUE
●Benefits:
○ThepotentialtolinkLLMswithinternaldocumentdatabases,unlockinginsightsfrominternaldatawithLLMcapabilities.
○Thepotentialtohavemuchmoreaccurateandrecentinformation.
○Theresultingsystemcouldincludereferences/citationstotheoriginalsourcedocumentsfromwhichtheresponsewasgenerated.
●Drawbacks:
○LLMretrievalmodelscanstillbeinaccurateandhallucinate,albeittypicallylessthanwhenusingLLMswithoutretrieval.
○Requiresastronginformationclassificationtomitigateprivacyrisks.
○DataleakageriskifLLMandsearcharenotinthesameinfrastructure.
USECASES
●UsingLLMstoanswerquestionsaboutaninternal,privatedocumentdatabase
●AugmentingLLMswithwebsearchresults
LLMWithDocument
RetrievalorSearch
LLMandRetrieval
Prompt
Response
Retrieval/
Search
Model
LLMAPI
Prompt+Context
User
Interface
Query
Top
Docs
Document
Database
PrepTheServices
UserPrompt
4
IndexyourinternaldocswithAzureCognitive
services
1
AzureCognitiveServices
ConvertedChatGPT
Prompt
2
AzureOpenAI
MasterPrompt
Service
SetupyourownPrivate
InstanceofChatGPTw/API
8
3
9
Howitworks
Interactwithservices
PrompttranslatedtoaQueryof
IndexedData
5
6
MasterPrompt
7
ListofDocument
snippetsfromprivate
dataindex
HiddenfromUser
GeneratedSummary
Source1Source2
Groundingw/sources
DESIGNPATTERNAPPLICATION
EmbedLLM“As-Is”Into
anApplicationFrame
●Name:EmbedLLM“as-is”intoanapplicationframe
●Description:ExposingLLMcapabilitiesviaanapplicationframethatmakesAPIcallstotheLLMonthebackend
●Motivation:TobettercontrolandsecureadoptionofLLMcapabilities
●Solution:ServicecalledviaAPIandresultspresentedinUIframeinsidehostapplication
●Implementation:Implementedasanon-demanddiscoveryorcontentgenerationtool(inessence,anewtoolinaframeawaitingapromptfromuser)
VALUE
●Benefits:
○TakesadvantageofthebetterprivacyandsecurityprotectionsincludedinAPIofferings(ascomparedtotheend-userapplications).
○Easiertomonitorcompliancebyrecordingusageviatheproprietaryuserinterface.
○APIsgivemoreflexibilityforcreatingcomplexworkflows(forexample,addingautomatedcontrolsbeforesendingdatatotheAPI).
●Drawbacks:
○Volumeofuseandpricing:APIcostsneedtobemonitored.
○PrivateinstancesofLLMscouldbeeventuallybeoffereddirectlyby
vendors,changingthecost-benefitofbuildingaprivateuserinterface.
USECASES
●EnablingemployeeaccesstoLLMsinacontrolledenvironment
●AlltheusecasesintheUsingLLMsAs-Isapplyhere:codegeneration,Ideageneration/brainstorming,copywriting/contentcreation,generalknowledgediscovery,basicNLPtasks
Request
App
Frame
AppUserInterface
APICall
PromptResponse
LLMExposedWithinanApplicationFrame
User
Response
LLM
API
Non-LLM
prompt
UI
DESIGNPATTERNAPPLICATION
EmbedLLMIntoanApplicationWorkflow
●Name:LLMembeddedinanapplicationworkflow
●Description:Embeddingas-isLLMaspartofabroaderapplicationworkflow.ThisdiffersfromtheApplicationFramepatterninthatthisisnotjustawayto
exposeLLMAPIs,butawaytointegratethemaspartofacomplexapplication
●DataConsiderations:PotentialinconsistencybetweentheLLMandthehostapplicationcontextanddata
●Motivation:ToexpandthefunctionalityofanapplicationwithLLMcapabilities
●Solution:LLMcalledviaAPIbyapplicationandresultsprocessedbytheapplication
●Implementation:Canbeimplementedintwoways:
○Asasecondarysourceofcontentproactivelyqueriedbyapplicationandpresentedtotheuser
○WheretheLLMoutputdrivesanotherprocessintheapplicationandmayormaynotpresentresultsintheUI
VALUE
●Benefits:
○Enhancesthefunctionalityofanapplication
●Drawbacks:
○UsagecontrolsneedtobeimplementedtokeepAPIcostsundercontrol
○UsingtheLLMasacomponentofanapplicationmightbetooriskyforsomeusecases,requiringcarefulguardraildesign
USECASES
●EmbeddingLLMsintoproductivitysoftwareorcollaborationtools
●PresentingLLMoutputsalongsideexistingsearchresults
●Embeddedintoacontentmanagementsystem
●ChatbotapplicationexpandingvirtualassistantnetworkwithLLMs
Aproprietaryapp
augmentedwith
LLMs
Prompt
LLM
API
Response
LLMinanApplicationWorkflow
User
AppWorkflowTrigger
ProcessLLMResponse
Application
AppUserInterface
DESIGNPATTERNAPPLICATION
LLMasaSecondaryChatbot
●Name:LLMasasecondaryconversationalagent
●Description:AconversationalsystemroutesrequeststoanexistingchatbotortheLLMAPI.Thishandovercouldalsobedonefromtheexistingchatbot.
●Motivation:
○ToaddabroadgeneralknowledgeexperiencetoaconversationalUI
○Toenableopen-endedconversations
●Solution:Therearetwobroadapproaches:
○WhereachatbotorchestrationfunctionroutesauserquerytoeitheranexistingchatbotortheLLMAPI
○WhereexistingchatbothaslowconfidenceandhandsqueryovertotheLLM
●Implementation:Theincumbentconversationalsystemisresponsiblefor
invokingtheLLMbasedoncontextorenablingthechatbotsinitsnetworktofallback/handovertotheLLMbasedonconfidencelevels(orsomeotherfactor).
VALUE
●Benefits:
○Extendtheconversationalcapabilitiesofanexistingchatbotecosystem
●Drawbacks:
○LowconsistencyinresponsebetweentheLLMandtheexistingchatbot
○Riskinlowaccuracy/hallucinationscomingfromtheLLMresponses
○ExternalchatbotsmayrequiresendingcustomerdataintotheLLMAPI,potentiallycreatingaprivacyrisk
USECASES
●Improvingcustomerservicechatbots
●Augmentingnonplayablecharactersinvideogames
User
Interface
Orchestration&
RoutingLogic
1
LLM
API
OtherChatbot
2
Response
Handling
Option1.Routetoappropriatebot
Option2.Handoverwhenchatbot
confidenceislow
Response
LLMasSecondary
Agent
Non-LLM
promptUI
ShareableSummary
Recommendations
AsanITleaderfocusedonleveraginggenerativeAItocreatebusinessvalue,youshould:
?Runaworkshoptogenerateuse-caseideaswiththebusiness,focusingonthedisruptivepotentialofgenerativeAIandthewayinwhichitcanenablestrategicobjectives.
?Prioritizetheusecasesforyourpilotagainsttheirpotentialbusinessvalueandfeasibility.FocusonnomorethanafewusecasesforyourgenerativeAIpilot.
?Assembleasmallbutdiverseteam,includingbusinesspartners,softwaredevelopersandAIexperts.Dedicatethisfusionteamforthedurationofthepilot.
?Createaminimumviableproducttovalidateeachusecase.Identifythetargetbusinesskeyperformanceindicator(KPI)improvementhypothesis,anddefinethedeploymentapproachesandriskmitigationsrequiredtoquicklytestthishypothesis.
ViewDocument
4?2023GartnerInc.and/oritsaffiliates.Allrightsreserved.
Mitigate
Hallucinations
?DocumentLimitations
?ModelMonitoring
CollaborateAcrossStakeholders
?SeekDiversity
?PublishLessonsLearned
InstillResponsibleAIPractices
PreventMisuse
?UsageGuidelines
?Enforcement
32
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
AI
Experts
AllowUserstoReportIssues
AI
Services
AIUsers
CreateaFeedbackLoop
Communicate
Limitations
RESTRICTEDDISTRIBUTION
33?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
ConductAdversarial
Testingvia“RedTeaming”
Insteadofdoingextensive
annotation,theredteamconductsadversarialtesting,activelyseekingoutexampleswhereitfails.
Themodelisretrainedonthese
examples,withtheteamadding
newadversarialexamples—
continuingthisprocessuntilthey
closethelooponfindingfailures.
34
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
UpskillingRecommendations
?AlignyourskillsdevelopmentwiththedeploymentpatternsforLLMsthatbestfitsyourorganizationsusecaseandmaturity.Formostorganizations,thiswillconsistoftheadoptionofCOTSapplicationsincorporatingLLMs,orLLMapplications
thatleverageretrievalaugmentedgeneration(RAG).
?Crossfunctionaltechnicalteamsshouldupskillpromptengineering,knowledgegraphandLLMOpsskills.CitizenDataScientistsshoulddevelopprompt
engineeringskills.
?Learnfromproductmanagementbestpracticesandspendmoretimeon
discoverybeforeyoujumpintodelivery.Figuringoutwhattobuild,howtobuildit,andhowtobringittomarket,evenwithhelpfromasmartAIcopilot,isstilla
highlychallengingactivity.
?Architects:focusonimprovingTeam,ProcessesandOrganizationdesignwithmethodssuchasAgile,TeamTopologiesandWardleymappingtoenablethevelocity,serviceorientationandadaptabilitytochangerequiredbyAIadoption.
RESTRICTEDDISTRIBUTION
35?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
PromptEngineeringMethods&Skills
TechnicalSkills
SoftSkills
Tools
Core
Prompt
Formulation/Chaining
Writing/CommunicationBusinessDomain
Knowledge
PromptManagement
Valuable
AdvancedPromptingMethods
Prompt
Monitoring/RelevanceScoring
Creativity
Reasoning
ProductSense
ThinkingEnd-To-EndCollaboration
Prompt
Engineering/PromptInfrastructure
Search/Indexing/VectorDatabases
Specialized
SemanticSearch
Knowledge
Engineering
AdversarialPromptingPromptOptimization
Architecture
UserEmpathy
DesignThinking
Persuasion
Automation/Workflow
Platforms
SymbolicAIPluginsDataLabeling
36
RESTRICTEDDISTRIBUTION
?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
Domainspecific
orGeneral
Purpose
ModelSize&Benchmarks
EcosystemorBuildyouown
OrganizationalSupport
ModelUpdateoptions
Execution
performance&
latency
LargeLanguageModel(LLM)
RolesandSkills
Considerations
QualityofDataSources
ArchitectureTransparency
Deploymentoptions
RESTRICTEDDISTRIBUTION
37?2023Gartner,Inc.and/oritsaffiliates.Allrightsreserved.
FutureofGenerativeAI
?Rawpotentialisenormous—morepowerfulandversatilemodels,butsafetyandveracityremainquestionable.
?Willberapidlyembeddedintoconsumerandbusinessapps.
?Modelsizeswillcontinuetoscalebutclientswillprioritizecost,simplicity,security,transparencyanddomainspecificity.
?Emergenceofnewbusinessmodels&ecosystems.
?Growthinmultimodalmodels.
?Theconcentrationofpowerthatthisphenomenonentailsanditseffectsaren’tfullyunderstoodtoday.
?EverythingclaimstobepoweredbyAI.
RESTRICTEDDISTRIBUTION
38?2023G
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 地下管線施工方案
- 快遞行業(yè)勞務(wù)服務(wù)合作協(xié)議書(shū)
- 2024年工程項(xiàng)目施工合同
- 大型工業(yè)脫硫電氣施工方案
- 2024年度“智能游戲”開(kāi)發(fā)合同
- 高空作業(yè)施工質(zhì)量控制方案
- 藥品管理局多重耐藥菌監(jiān)測(cè)制度
- 2024年小區(qū)物業(yè)保險(xiǎn)管理合同
- 2024年度兼職人員聘用合同
- 2024年度供應(yīng)鏈管理合同
- 國(guó)開(kāi)電大 可編程控制器應(yīng)用實(shí)訓(xùn) 形考任務(wù)6實(shí)訓(xùn)報(bào)告
- GB/T 34120-2023電化學(xué)儲(chǔ)能系統(tǒng)儲(chǔ)能變流器技術(shù)要求
- 跨國(guó)企業(yè)中方外派人員的跨文化適應(yīng)
- 《道路交叉設(shè)計(jì)》課件
- 《活著》讀后感-課件
- 體檢報(bào)告匯總分析中風(fēng)險(xiǎn)的防范
- 村里建群管理制度
- 【城市軌道交通運(yùn)營(yíng)安全管理研究5300字】
- 2024年中核匯能有限公司招聘筆試參考題庫(kù)含答案解析
- 上海市2024屆高三7月模擬預(yù)測(cè)歷史試題(等級(jí)考)(解析版)
- 肺炎護(hù)理查房課件
評(píng)論
0/150
提交評(píng)論