版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年北京市西城區(qū)北京四中高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.120°的二面角的棱上有A,B兩點(diǎn),直線AC,BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB.已知,,,則CD的長(zhǎng)為()A. B.C. D.2.在正三棱錐中,,且,M,N分別為BC,AD的中點(diǎn),則直線AM和CN夾角的余弦值為()A. B.C. D.3.直線的傾斜角為()A. B.C. D.4.已知,則的大小關(guān)系為()A. B.C. D.5.已知公差不為0的等差數(shù)列中,,且,,成等比數(shù)列,則其前項(xiàng)和取得最大值時(shí),的值為()A.12 B.13C.12或13 D.13或146.若圓與圓相切,則實(shí)數(shù)a的值為()A.或0 B.0C. D.或7.已知空間向量,,且,則的值為()A. B.C. D.8.阿基米德既是古希臘著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的中心為原點(diǎn),焦點(diǎn)、在軸上,橢圓的面積為,且離心率為,則的標(biāo)準(zhǔn)方程為()A. B.C. D.9.若數(shù)列是等差數(shù)列,其前n項(xiàng)和為,若,且,則等于()A. B.C. D.10.已知圓與直線,則圓上到直線的距離為1的點(diǎn)的個(gè)數(shù)是()A.1 B.2C.3 D.411.如圖①所示,將一邊長(zhǎng)為1的正方形沿對(duì)角線折起,形成三棱錐,其主視圖與俯視圖如圖②所示,則左視圖的面積為()A. B.C. D.12.若等比數(shù)列的前n項(xiàng)和,則r的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若向量,,,且向量,,共面,則______14.某校對(duì)全校共1800名學(xué)生進(jìn)行健康調(diào)查,選用分層抽樣法抽取一個(gè)容量為200的樣本,已知女生比男生少抽了20人,則該校的女生人數(shù)應(yīng)是__________人.15.已知數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,則數(shù)列的公差為_(kāi)_________16.在圓M:中,過(guò)點(diǎn)的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)函數(shù).(1)討論函數(shù)在區(qū)間上的單調(diào)性;(2)函數(shù),若對(duì)任意的,總存在使得,求實(shí)數(shù)的取值范圍.18.(12分)設(shè)數(shù)列的前n項(xiàng)和為,且滿足.(1)證明為等比數(shù)列,并求數(shù)列通項(xiàng)公式;(2)在(1)的條件下,設(shè),求數(shù)列的前項(xiàng)和.19.(12分)如圖,在四棱錐中中,平面ABCD,底面ABCD是邊長(zhǎng)為2的正方形,.(1)求證:平面;(2)求二面角的平面角的余弦值.20.(12分)已知函數(shù).(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;(2)試討論函數(shù)的單調(diào)性.21.(12分)如圖所示,在正方體中,點(diǎn),,分別是,,的中點(diǎn)(1)證明:;(2)求直線與平面所成角的大小22.(10分)已知直線,,,其中與的交點(diǎn)為P(1)求過(guò)點(diǎn)P且與平行的直線方程;(2)求以點(diǎn)P為圓心,截所得弦長(zhǎng)為8的圓的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由,把展開(kāi)整理求解【詳解】由已知可得:,,,,=41,∴.故選:B2、B【解析】由題意可得兩兩垂直,所以以為原點(diǎn),所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解【詳解】因?yàn)?,所以兩兩垂直,所以以為原點(diǎn),所在的直線分別為軸,建立空間直角坐標(biāo)系,如圖所示,因?yàn)椋?因?yàn)镸,N分別為BC,AD的中點(diǎn),所以,所以,設(shè)直線AM和CN所成的角為,則,所以直線AM和CN夾角的余弦值為,故選:B3、D【解析】若直線傾斜角為,由題設(shè)有,結(jié)合即可得傾斜角的大小.【詳解】由直線方程,若其傾斜角為,則,而,∴.故選:D4、B【解析】構(gòu)造利用導(dǎo)數(shù)判斷函數(shù)在上單調(diào)遞減,利用單調(diào)性比較大小【詳解】設(shè)恒成立,函數(shù)在上單調(diào)遞減,.故選:B5、C【解析】設(shè)等差數(shù)列的公差為q,根據(jù),,成等比數(shù)列,利用等比中項(xiàng)求得公差,再由等差數(shù)列前n項(xiàng)和公式求解.【詳解】設(shè)等差數(shù)列的公差為q,因?yàn)?,且,,成等比?shù)列,所以,解得,所以,所以當(dāng)12或13時(shí),取得最大值,故選:C6、D【解析】根據(jù)給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計(jì)算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點(diǎn)不可能在圓內(nèi),則兩圓必外切,于是得,即,解得,所以實(shí)數(shù)a的值為或.故選:D7、B【解析】根據(jù)向量垂直得,即可求出的值.【詳解】.故選:B.8、A【解析】設(shè)橢圓方程為,解方程組即得解.【詳解】解:設(shè)橢圓方程為,由題意可知,橢圓的面積為,且、、均為正數(shù),即,解得,因?yàn)闄E圓的焦點(diǎn)在軸上,所以的標(biāo)準(zhǔn)方程為.故選:A.9、B【解析】由等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式求出的首項(xiàng)和公差,即可求出.【詳解】設(shè)等差數(shù)列的公差為,則解得:,所以.故選:B.10、B【解析】根據(jù)圓心到直線的距離即可判斷.【詳解】由得,則圓的圓心為,半徑,由,則圓心到直線的距離,∵,∴在圓上到直線距離為1的點(diǎn)有兩個(gè).故選:B.11、A【解析】由視圖確定該幾何體的特征,即可得解.【詳解】由主視圖可以看出,A點(diǎn)在面上的投影為的中點(diǎn),由俯視圖可以看出C點(diǎn)在面上的投影為的中點(diǎn),所以其左視圖為如圖所示的等腰直角三角形,直角邊長(zhǎng)為,于是左視圖的面積為故選:A.12、B【解析】利用成等比數(shù)列來(lái)求得.【詳解】依題意,等比數(shù)列的前n項(xiàng)和,,,所以.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】由向量共面的性質(zhì)列出方程組求解即可.【詳解】因?yàn)?,,共面,所以存在?shí)數(shù)x,y,使得,得,解得∴故答案為:14、810【解析】分析:首先確定抽取的女生人數(shù),然后由分層抽樣比即可確定女生的人數(shù).詳解:設(shè)抽取的女生人數(shù)為,則:,解得:,則抽取的女生人數(shù)為人,抽取的男生人數(shù)為人,據(jù)此可知該校女生人數(shù)應(yīng)是人.點(diǎn)睛:進(jìn)行分層抽樣的相關(guān)計(jì)算時(shí),常利用以下關(guān)系式巧解:(1);(2)總體中某兩層的個(gè)體數(shù)之比=樣本中這兩層抽取的個(gè)體數(shù)之比15、##【解析】利用等差數(shù)列的定義即得.【詳解】∵數(shù)列都是等差數(shù)列,公差分別為,數(shù)列滿足,∴.故答案為:.16、【解析】首先將圓的方程配成標(biāo)準(zhǔn)式,即可得到圓心坐標(biāo)與半徑,從而可得點(diǎn)在圓內(nèi),即可得到過(guò)點(diǎn)的最長(zhǎng)弦、最短弦弦長(zhǎng),即可求出四邊形的面積;【詳解】解:圓M:,即,圓心,半徑,點(diǎn),則,所以點(diǎn)在圓內(nèi),所以過(guò)點(diǎn)的最長(zhǎng)弦,又,所以最短弦,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)答案見(jiàn)解析;(2).【解析】(1)求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)性分類討論進(jìn)行求解即可;(2)根據(jù)存在性和任意性的定義,結(jié)合導(dǎo)數(shù)的性質(zhì)、(1)的結(jié)論、構(gòu)造函數(shù)法分類討論進(jìn)行求解即可.【小問(wèn)1詳解】,,①當(dāng)時(shí),恒成立,在上單調(diào)遞增.②當(dāng)時(shí),恒成立,在上單調(diào)遞減,③當(dāng)吋,,在單調(diào)遞減,單調(diào)遞增.綜上所述,當(dāng)吋,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,當(dāng)時(shí),在單調(diào)遞減,單調(diào)遞增.【小問(wèn)2詳解】由題意可知:在單調(diào)遞減,單調(diào)遞增由(1)可知:①當(dāng)時(shí),在單調(diào)遞增,則恒成立②當(dāng)時(shí),在單調(diào)遞減,則應(yīng)(舍)③當(dāng)時(shí),,則應(yīng)有令,則,且在單調(diào)遞增,單調(diào)遞減,又恒成立,則無(wú)解綜上,.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用構(gòu)造函數(shù)法,結(jié)合存在性、任意性的定義進(jìn)行求解是解題的關(guān)鍵.18、(1)證明見(jiàn)解析,;(2).【解析】(1)利用與的關(guān)系求數(shù)列的遞推關(guān)系,即得證明結(jié)論,并根據(jù)等比數(shù)列求通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果求出,再分和,求.【詳解】(1)當(dāng)時(shí),,,當(dāng)時(shí),,與已知式作差得,即,又,∴,∴,故數(shù)列是以為首項(xiàng),2為公比的等比數(shù)列,所以(2)由(1)知,∴,若,,若,,∴.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是第二問(wèn)弄清楚數(shù)列與的前項(xiàng)和的關(guān)系,在分段求數(shù)列的前項(xiàng)和.19、(1)證明見(jiàn)解析(2)【解析】(1)根據(jù)平面得到,結(jié)合得到證明。(2)建立空間直角坐標(biāo)系,計(jì)算各點(diǎn)坐標(biāo),計(jì)算平面的法向量,根據(jù)向量的夾角公式得到答案?!拘?wèn)1詳解】由于平面,平面,所以,由于,又,所以平面【小問(wèn)2詳解】?jī)蓛纱怪?,建立如圖所示空間直角坐標(biāo)系,,,,,,設(shè)平面的一個(gè)法向量為設(shè)平面的一個(gè)法向量為,由,得,故可取所以所以二面角的平面角的余弦值20、(1)(2)詳見(jiàn)解析.【解析】(1)由,求導(dǎo),得到,寫出切線方程;(2)求導(dǎo),再分,,討論求解.【小問(wèn)1詳解】解:因?yàn)?,所以,則,所以,所以曲線在點(diǎn)處的切線方程是,即;【小問(wèn)2詳解】因?yàn)?,所以,?dāng)時(shí),成立,則在上遞減;當(dāng)時(shí),令,得,當(dāng)時(shí),,當(dāng)時(shí),,所以在上遞減,在上遞增;綜上:當(dāng)時(shí),在上遞減;當(dāng)時(shí),在上遞減,在上遞增;21、(1)證明見(jiàn)解析(2)【解析】(1)連接,可得,從而可證四邊形是平行四邊形,從而證明結(jié)論.(2)以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸,建立空間直角坐標(biāo)系,利用向量法求解線面角.【小問(wèn)1詳解】如圖,連接在正方體中,且因?yàn)?,分別是,的中點(diǎn),所以且又因?yàn)槭堑闹悬c(diǎn),所以,且,所以四邊形是平行四邊形,所以【小問(wèn)2詳解】以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,設(shè)為平面的法向量因?yàn)?,,,所以令,得設(shè)直線
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 10吃飯有講究(說(shuō)課稿)-部編版道德與法治一年級(jí)上冊(cè)
- 7 湯姆·索亞歷險(xiǎn)記(節(jié)選)說(shuō)課稿-2023-2024學(xué)年六年級(jí)下冊(cè)語(yǔ)文統(tǒng)編版
- 2025集體土地房屋轉(zhuǎn)讓合同
- Unit 2 My week PB Let's talk (說(shuō)課稿)-2024-2025學(xué)年人教PEP版英語(yǔ)五年級(jí)上冊(cè)001
- 2025產(chǎn)品銷售咨詢服務(wù)合同(中介撮合客戶)
- 2025合同模板車位租賃合同范本
- 10吃飯有講究 說(shuō)課稿-2024-2025學(xué)年道德與法治一年級(jí)上冊(cè)統(tǒng)編版001
- 個(gè)人汽車信貸合同范例
- 鄉(xiāng)村道路改造雨季施工方案
- 重慶不銹鋼支撐施工方案
- T-CACM 1560.6-2023 中醫(yī)養(yǎng)生保健服務(wù)(非醫(yī)療)技術(shù)操作規(guī)范穴位貼敷
- 2024年全國(guó)統(tǒng)一考試高考新課標(biāo)Ⅱ卷數(shù)學(xué)試題(真題+答案)
- 人教版小學(xué)數(shù)學(xué)一年級(jí)下冊(cè)第1-4單元教材分析
- JTS-215-2018碼頭結(jié)構(gòu)施工規(guī)范
- 2024年長(zhǎng)沙衛(wèi)生職業(yè)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)含答案
- 2024山西省文化旅游投資控股集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 出租房房東消防培訓(xùn)
- 2024年度-小學(xué)語(yǔ)文教師經(jīng)驗(yàn)交流
- 加油站廉潔培訓(xùn)課件
- 認(rèn)識(shí)比例尺人教版課件
- 2022版義務(wù)教育(生物學(xué))課程標(biāo)準(zhǔn)(附課標(biāo)解讀)
評(píng)論
0/150
提交評(píng)論