2023-2024學(xué)年安徽省安慶一中、山西省太原五中等五省六校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
2023-2024學(xué)年安徽省安慶一中、山西省太原五中等五省六校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
2023-2024學(xué)年安徽省安慶一中、山西省太原五中等五省六校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
2023-2024學(xué)年安徽省安慶一中、山西省太原五中等五省六校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
2023-2024學(xué)年安徽省安慶一中、山西省太原五中等五省六校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年安徽省安慶一中、山西省太原五中等五省六校數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)命題,則為A. B.C. D.2.已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)滿足,則的最小值為()A B.C. D.43.圓與圓的交點(diǎn)為A,B,則線段AB的垂直平分線的方程是A. B.C. D.4.已知函數(shù),若,,則實(shí)數(shù)的取值范圍是A. B.C. D.5.在各項(xiàng)都為正數(shù)的等比數(shù)列中,首項(xiàng),前3項(xiàng)和為21,則()A.84 B.72C.33 D.1896.函數(shù)區(qū)間上有()A.極大值為27,極小值為-5 B.無(wú)極大值,極小值為-5C.極大值為27,無(wú)極小值 D.無(wú)極大值,無(wú)極小值7.已知F為橢圓C:=1(a>b>0)右焦點(diǎn),O為坐標(biāo)原點(diǎn),P為橢圓C上一點(diǎn),若|OP|=|OF|,∠POF=120°,則橢圓C的離心率為()A. B.C.-1 D.-18.設(shè)等差數(shù)列的前項(xiàng)和為,已知,,則的公差為()A.2 B.3C.4 D.59.已知為等差數(shù)列,為其前n項(xiàng)和,,則下列和與公差無(wú)關(guān)的是()A. B.C. D.10.已知函數(shù)在處的導(dǎo)數(shù)為,則()A. B.C. D.11.已知,是橢圓的兩焦點(diǎn),是橢圓上任一點(diǎn),從引外角平分線的垂線,垂足為,則點(diǎn)的軌跡為()A.圓 B.兩個(gè)圓C.橢圓 D.兩個(gè)橢圓12.已知雙曲線的離心率為,則該雙曲線的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)E,F(xiàn)分別是AB,BC的中A點(diǎn),將,,,分別沿DE,EF,DF折起,使得A,B,C三點(diǎn)重合于點(diǎn)P,則四面體的外接球表面積為_(kāi)___________.14.已知在四面體ABCD中,,,則______15.過(guò)圓內(nèi)的點(diǎn)作一條直線,使它被該圓截得的線段最長(zhǎng),則直線的方程是______16.在空間直角坐標(biāo)系中,若三點(diǎn)、、滿足,則實(shí)數(shù)的值為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在直三棱柱中,,,與交于點(diǎn),為的中點(diǎn),(1)求證:平面;(2)求證:平面平面18.(12分)已知直線l過(guò)點(diǎn)A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點(diǎn)P,Q,且|PQ|=8,求圓C方程19.(12分)已知命題;命題.(1)若p是q的充分條件,求m的取值范圍;(2)當(dāng)時(shí),已知是假命題,是真命題,求x的取值范圍.20.(12分)阿基米德(公元前287年---公元前212年,古希臘)不僅是著名的哲學(xué)家、物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.在平面直角坐標(biāo)系中,橢圓的面積等于,且橢圓的焦距為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)點(diǎn)是軸上的定點(diǎn),直線與橢圓交于不同的兩點(diǎn),已知A關(guān)于軸的對(duì)稱點(diǎn)為,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,已知三點(diǎn)共線,試探究直線是否過(guò)定點(diǎn).若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.21.(12分)在中,角、、C所對(duì)的邊分別為、、,,.(1)若,求的值;(2)若的面積,求,的值.22.(10分)為迎接2022年北京冬奧會(huì),推廣滑雪運(yùn)動(dòng),某滑雪場(chǎng)開(kāi)展滑雪促銷活動(dòng).該滑雪場(chǎng)的收費(fèi)標(biāo)準(zhǔn)是:滑雪時(shí)間不超過(guò)1小時(shí)免費(fèi),超過(guò)1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為40元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人相互獨(dú)立地來(lái)該滑雪場(chǎng)運(yùn)動(dòng),設(shè)甲、乙不超過(guò)1小時(shí)離開(kāi)的概率分別為,;1小時(shí)以上且不超過(guò)2小時(shí)離開(kāi)的概率分別為,;兩人滑雪時(shí)間都不會(huì)超過(guò)3小時(shí).求甲、乙兩人所付滑雪費(fèi)用相同的概率;

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】特稱命題的否定為全稱命題,所以命題的否命題應(yīng)該為,即本題的正確選項(xiàng)為C.2、B【解析】由數(shù)量積的坐標(biāo)運(yùn)算求得,令,化為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案【詳解】解:根據(jù)題意可得,、,所以,令,由約束條件作出可行域如下圖所示,由得,即,由,得,由圖可知,當(dāng)直線過(guò)時(shí),直線在軸上的截距最小,有最小值為,即,所以故選:B3、A【解析】圓的圓心為,圓的圓心為,兩圓的相交弦的垂直平分線即為直線,其方程為,即;故選A.【點(diǎn)睛】本題考查圓的一般方程、兩圓的相交弦問(wèn)題;處理直線和圓、圓和圓的位置關(guān)系時(shí),往往結(jié)合平面幾何知識(shí)(如本題中,求兩圓的相交弦的垂直平分線的方程即為經(jīng)過(guò)兩圓的圓心的直線方程)可減小運(yùn)算量.4、A【解析】函數(shù),若,,可得,解得或,則實(shí)數(shù)的取值范圍是,故選A.5、A【解析】分析:設(shè)等比數(shù)列的公比為,根據(jù)前三項(xiàng)的和為列方程,結(jié)合等比數(shù)列中,各項(xiàng)都為正數(shù),解得,從而可以求出的值.詳解:設(shè)等比數(shù)列的公比為,首項(xiàng)為3,前三項(xiàng)的和為,,解之得或,在等比數(shù)列中,各項(xiàng)都為正數(shù),公比為正數(shù),舍去),,故選A.點(diǎn)睛:本題考查以一個(gè)特殊的等比數(shù)列為載體,通過(guò)求連續(xù)三項(xiàng)和的問(wèn)題,著重考查了等比數(shù)列的通項(xiàng),等比數(shù)列的性質(zhì)和前項(xiàng)和等知識(shí)點(diǎn),屬于簡(jiǎn)單題.6、B【解析】求出得出的單調(diào)區(qū)間,從而可得答案.【詳解】當(dāng)時(shí),,單調(diào)遞減.當(dāng)時(shí),,單調(diào)遞增.所以當(dāng)時(shí),取得極小值,極小值為,無(wú)極大值.故選:B7、D【解析】記橢圓的左焦點(diǎn)為,在中,通過(guò)余弦定理得出,,根據(jù)橢圓的定義可得,進(jìn)而可得結(jié)果.【詳解】記橢圓的左焦點(diǎn)為,在中,可得,在中,可得,故,故,故選:D.8、B【解析】由以及等差數(shù)列的性質(zhì),可得的值,再結(jié)合即可求出公差.【詳解】解:,得,,又,兩式相減得,則.故選:B.9、C【解析】依題意根據(jù)等差數(shù)列的通項(xiàng)公式可得,再根據(jù)等差數(shù)列前項(xiàng)和公式計(jì)算可得;【詳解】解:因?yàn)?,所以,即,所以,,,,故選:C10、C【解析】利用導(dǎo)數(shù)的定義即可求出【詳解】故選:C11、A【解析】設(shè)的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn),由橢圓性質(zhì)推導(dǎo)出,由題意知是△的中位線,從而得到點(diǎn)的軌跡是以為圓心,以為半徑的圓【詳解】是焦點(diǎn)為、的橢圓上一點(diǎn)為的外角平分線,,設(shè)的延長(zhǎng)線交的延長(zhǎng)線于點(diǎn),如圖,,,,由題意知是△的中位線,,點(diǎn)的軌跡是以為圓心,以為半徑的圓故選:A12、C【解析】求得,由此求得雙曲線的漸近線方程.【詳解】離心率,則,所以漸近線方程.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意在四面體中兩兩垂直,將該四面體補(bǔ)成長(zhǎng)方體,則長(zhǎng)方體與四面體的外接球相同,從而可求解.【詳解】將直角,,,分別沿DE,EF,DF折起,使得A,B,C三點(diǎn)重合于點(diǎn)P,所以在四面體中兩兩垂直,將該四面體補(bǔ)成長(zhǎng)方體,如圖.則長(zhǎng)方體與四面體的外接球相同.長(zhǎng)方體的外接球在其對(duì)角線的中點(diǎn)處.由題意可得,則長(zhǎng)方體的外接球的半徑為所以四面體的外接球表面積為故答案為:14、24【解析】由線段的空間關(guān)系有,應(yīng)用向量數(shù)量積的運(yùn)算律及已知條件即可求.【詳解】由題設(shè),可得如下四面體示意圖,則,又,,所以.故答案為:2415、【解析】當(dāng)直線l過(guò)圓心時(shí)滿足題意,進(jìn)而求出答案.【詳解】圓的標(biāo)準(zhǔn)方程為:,圓心,當(dāng)l過(guò)圓心時(shí)滿足題意,,所以l的方程為:.故答案為:.16、##【解析】分析可知,結(jié)合空間向量數(shù)量積的坐標(biāo)運(yùn)算可求得結(jié)果.【詳解】由已知可得,,因?yàn)?,則,即,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】(1)根據(jù)直棱柱的性質(zhì)、平行四邊形的性質(zhì),結(jié)合三角形中位線定理、線面平行的判定定理進(jìn)行證明即可;(2)根據(jù)直棱柱的性質(zhì)、菱形的判定定理和性質(zhì),結(jié)合線面垂直的判定定理、面面垂直的判定定理進(jìn)行證明即可.【小問(wèn)1詳解】在直三棱柱中,,且四邊形平行四邊形,又,則為的中點(diǎn),又為的中點(diǎn),故,即:,且平面,平面,所以平面;【小問(wèn)2詳解】在直三棱柱中,平面,平面,則,且,,平面,故平面,因?yàn)槠矫妫?,又在平行四邊形中,,則四邊形菱形,所以,且,平面,故平面,因?yàn)槠矫?,所以平面平?18、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關(guān)系得過(guò)直線l的斜率,由點(diǎn)斜式化簡(jiǎn)即可求解l的一般式方程;(2)結(jié)合勾股定理建立弦心距(由點(diǎn)到直線距離公式求解),半弦長(zhǎng),圓半徑的基本關(guān)系,解出,即可求解圓C的方程【小問(wèn)1詳解】因?yàn)橹本€l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,即3x+4y+5=0,因此直線l的一般式方程為3x+4y+5=0;【小問(wèn)2詳解】圓C:x2+y2=m的圓心為(0,0),半徑為,圓心(0,0)到直線l的距離為,則半徑滿足m=42+12=17,即m=17,所以圓C:x2+y2=1719、(1);(2).【解析】(1)解不等式組即得解;(2)由題得p、q一真一假,分兩種情況討論得解.【小問(wèn)1詳解】解:由題意知p是q的充分條件,即p集合包含于q集合,有;【小問(wèn)2詳解】解:當(dāng)時(shí),有,由題意知,p、q一真一假,當(dāng)p真q假時(shí),,當(dāng)p假q真時(shí),,綜上,x的取值范圍為20、(1);(2)直線恒過(guò)定點(diǎn).【解析】(1)根據(jù)橢圓的焦距可求出,由橢圓的面積等于得,求出,即可求出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線,,進(jìn)而寫出為,兩點(diǎn)坐標(biāo),將直線與橢圓的方程聯(lián)立,根據(jù)韋達(dá)定理求,,由三點(diǎn)共線可知,將,代入并化簡(jiǎn),得到的關(guān)系式,分析可知經(jīng)過(guò)的定點(diǎn)坐標(biāo).【詳解】(1)橢圓的面積等于,,,橢圓的焦距為,,,橢圓方程為(2)設(shè)直線,,則,,三點(diǎn)共線,得,直線與橢圓交于兩點(diǎn),,,,由,得,,,代入中,,,當(dāng),直線方程為,則重合,不符合題意;當(dāng)時(shí),直線,所以直線恒過(guò)定點(diǎn).21、(1)(2),【解析】(1)根據(jù)同角三角函數(shù)的基本

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論