2023-2024學年貴州省百校大聯(lián)考高二上數(shù)學期末學業(yè)水平測試試題含解析_第1頁
2023-2024學年貴州省百校大聯(lián)考高二上數(shù)學期末學業(yè)水平測試試題含解析_第2頁
2023-2024學年貴州省百校大聯(lián)考高二上數(shù)學期末學業(yè)水平測試試題含解析_第3頁
2023-2024學年貴州省百校大聯(lián)考高二上數(shù)學期末學業(yè)水平測試試題含解析_第4頁
2023-2024學年貴州省百校大聯(lián)考高二上數(shù)學期末學業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年貴州省百校大聯(lián)考高二上數(shù)學期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓與圓,則兩圓的位置關系是()A.外切 B.內(nèi)切C.相交 D.相離2.已知,,,執(zhí)行如圖所示的程序框圖,輸出值為()A. B.C. D.3.兩個圓和的位置是關系是()A.相離 B.外切C.相交 D.內(nèi)含4.拋物線y2=4x的焦點坐標是A.(0,2) B.(0,1)C.(2,0) D.(1,0)5.橢圓的焦點坐標為()A.和 B.和C.和 D.和6.已知點,動點P滿足,則點P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓7.直線恒過定點()A. B.C. D.8.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.9.甲組數(shù)據(jù)為:5,12,16,21,25,37,乙組數(shù)據(jù)為:1,6,14,18,38,39,則甲、乙的平均數(shù)、極差及中位數(shù)相同的是()A.極差 B.平均數(shù)C.中位數(shù) D.都不相同10.已知是拋物線上的一個動點,是圓上的一個動點,是一個定點,則的最小值為A. B.C. D.11.若方程表示焦點在y軸上的雙曲線,則k的取值范圍是()A. B.C. D.12.我國古代數(shù)學典籍《四元玉鑒》中有如下一段話:“河有汛,預差夫一千八百八十人筑堤,只云初日差六十五人,次日轉(zhuǎn)多七人,今有三日連差三百人,問已差人幾天,差人幾何?”其大意為“官府陸續(xù)派遣1880人前往修筑堤壩,第一天派出65人,從第二天開始每天派出的人數(shù)比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人二、填空題:本題共4小題,每小題5分,共20分。13.如圖是某賽季CBA廣東東莞銀行隊甲、乙兩名籃球運動員每場比賽得分的莖葉圖,則甲、乙比賽得分的中位數(shù)之和是______.14.從正方體的8個頂點中選取4個作為項點,可得到四面體的概率為________15.已知函數(shù)的圖象與x軸相交于A,B兩點,與y軸相交于點C,則的外接圓E的方程是________16.若直線與曲線沒有公共點,則實數(shù)的取值范圍是____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點,,線段是圓的直徑.(1)求圓的方程;(2)過點的直線與圓相交于,兩點,且,求直線的方程.18.(12分)已知拋物線的準線方程是.(Ⅰ)求拋物線方程;(Ⅱ)設直線與拋物線相交于,兩點,為坐標原點,證明:.19.(12分)某高校在今年的自主招生考試成績中隨機抽取100名考生的筆試成績,分為5組制出頻率分布表如圖所示.組號分組頻數(shù)頻率150052350.35330b4cd5100.1(1)求b,c,d的值;(2)該校決定在成績較好的3、4、5組用分層抽樣抽取6名學生進行面試,則每組應各抽多少名學生?(3)在(2)的前提下,從抽到6名學生中再隨機抽取2名被甲考官面試,求這2名學生來自同一組的概率.20.(12分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側(cè)棱包含端點上的動點.(1)當時,求證平面;(2)當直線與平面所成角的正弦值為時,求二面角的余弦值.21.(12分)如圖,在直三棱柱中,,,,為的中點,點,分別在棱,上,,.(1)求點到直線的距離(2)求平面與平面夾角的余弦值.22.(10分)已知橢圓:,的左右焦點,是雙曲線的左右頂點,的離心率為,的離心率為,點在上,過點E和,分別作直線交橢圓于,和,點,如圖.(1)求,的方程;(2)求證:直線和的斜率之積為定值;(3)求證:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求得兩圓的圓心和半徑,再根據(jù)圓心距與半徑之和半徑之差的關系,即可判斷位置關系.【詳解】對圓,其圓心,半徑;對圓,其圓心,半徑;又,故兩圓外切.故選:A.2、A【解析】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),計算三個數(shù)判斷作答.【詳解】模擬程序運行可得程序框圖的功能是計算并輸出三個數(shù)中的最小數(shù),因,,,則,不成立,則,不成立,則,所以應輸出的x值為.故選:A3、C【解析】根據(jù)圓的方程得出兩圓的圓心和半徑,再得出圓心距離與兩圓的半徑的關系,可得選項.【詳解】圓的圓心為,半徑,的圓心為,半徑,則,所以兩圓的位置是關系是相交,故選:C.【點睛】本題考查兩圓的位置關系,關鍵在于運用判定兩圓的位置關系一般利用幾何法.即比較圓心之間的距離與半徑之和、之差的大小關系,屬于基礎題.4、D【解析】的焦點坐標為,故選D.【考點】拋物線的性質(zhì)【名師點睛】本題考查拋物線的定義.解析幾何是中學數(shù)學的一個重要分支,圓錐曲線是解析幾何的重要內(nèi)容,它們的定義、標準方程、簡單幾何性質(zhì)是我們要重點掌握的內(nèi)容,一定要熟記掌握5、D【解析】本題是焦點在x軸的橢圓,求出c,即可求得焦點坐標.【詳解】,可得焦點坐標為和.故選:D6、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.7、A【解析】將直線方程變形得,再根據(jù)方程即可得答案.【詳解】解:由得到:,∴直線恒過定點故選:A8、A【解析】由焦距為可得,又,進而可得,最后根據(jù)焦點在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因為雙曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.9、B【解析】由平均數(shù)、極差及中位數(shù)的定義依次求解即可比較【詳解】,,故甲、乙的平均數(shù)相同,甲、乙的極差分別為,,故不同,甲、乙的中位數(shù)分別為,,故不同,故選:10、A【解析】恰好為拋物線的焦點,等于到準線的距離,要想最小,過圓心作拋物線的準線的垂線交拋物線于點,交圓于,最小值等于圓心到準線的距離減去半徑4-1=.考點:1.拋物線的定義;2.圓中的最值問題;11、B【解析】由條件可得,即可得到答案.【詳解】方程表示焦點在y軸上的雙曲線所以,即故選:B12、B【解析】根據(jù)題意,設每天派出的人數(shù)組成數(shù)列,可得數(shù)列是首項,公差數(shù)7的等差數(shù)列,解方程可得所求值【詳解】解:設第天派出的人數(shù)為,則是以65為首項、7為公差的等差數(shù)列,且,,∴,,∴天則目前派出的人數(shù)為人,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、58【解析】分別將甲、乙兩名運動員的得分按小到大或者大到小排序,分別確定中位數(shù),再相加即可【詳解】因為甲、乙兩名籃球運動員各參賽11場,故中位數(shù)是第6個數(shù)甲的得分按小到大排序后為:12,22,23,32,33,34,35,40,43,44,46,所以,中位數(shù)為34乙的得分按小到大排序后為:12,13,21,22,23,24,31,31,34,40,49所以,中位數(shù)為24所以,中位數(shù)之和為34+24=58,故答案為:5814、【解析】計算出正方體的8個頂點中選取4個作為項點的取法和分從上底面取一個點下底面取三個點、從上底面取二個點下底面取二個點、從上底面取三個點下底面取一個點可得到四面體的取法,由古典概型概率計算公式可得答案.【詳解】正方體的8個頂點中選取4個作為項點,共有取法,可得到四面體的情況有從上底面取一個點下底面取三個點有種;從上底面取二個點下底面取二個點有種,其中當上底面和下底面取的四個點在同一平面時共有10種情況不符合,此種情況共有種;從上底面取三個點下底面取一個點有種;一個有種,所以可得到四面體的概率為.故答案為:.15、【解析】由題可求三角形三頂點的坐標,三角形的外接圓的方程即求.【詳解】令,得或,則,∴外接圓的圓心的橫坐標為2,設,半徑為r,由,得,則,即,得,.∴的外接圓的方程為.故答案為:.16、;【解析】可化簡曲線的方程為,作出其圖形,數(shù)形結合求臨界值即可求解.【詳解】由可得,所以曲線為以為圓心,的下半圓,作出圖形如圖:當直線過點時,,可得,當直線與半圓相切時,則圓心到直線的距離,可得:或(舍),若直線與曲線沒有公共點,由圖知:或,所以實數(shù)的取值范圍是:,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)AB兩點的中點為圓心,AB兩點距離的一半為半徑;(2)分斜率存在和不存在,根據(jù)垂徑定理即可求解.【小問1詳解】已知點,,線段是圓M的直徑,則圓心坐標為,∴半徑,∴圓的方程為;【小問2詳解】由(1)可知圓的圓心,半徑為.設為中點,則,,則.當?shù)男甭什淮嬖跁r,的方程為,此時,符合題意;當?shù)男甭蚀嬖跁r,設的方程為,即kx-y+2=0,則,解得,故直線的方程為,即.綜上,直線的方程為或.18、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯(lián)立,通過韋達定理求解直線的斜率關系即可證明OM⊥ON試題解析:(Ⅰ)解:因為拋物線的準線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設,.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號,所以.所以直線與直線的斜率之積為,即.考點:直線與拋物線的位置關系;拋物線的標準方程19、(1),,(2)第三組應抽人,第四組應抽人,第五組應抽人(3)【解析】(1)根據(jù)頻率分布表的數(shù)據(jù)求出b,c,d的值;(2)三個組共有60人,從而利用分層抽樣抽樣方法抽取6名學生第三組應抽3人,第四組應抽2人,第五組應抽1人;(3)記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,利用列舉法結合概率公式得出答案.【小問1詳解】由題意得,,【小問2詳解】三個組共有60人,所以第三組應抽人,第四組應抽人,第五組應抽人.【小問3詳解】記第三組抽出的3人分別為,第四組抽出的2人分別為,第五組抽出的1人為,從這6人中隨機抽取2人,基本事件包含,共15個基本事件.其中2人來自同一組的情況有,共4種.所以,2人來自同一組的概率為.20、(1)證明見解析;(2).【解析】(1)連接交于,連接,證得,從而證得平面;(2)過作于,以為原點,建立空間直角坐標系,設,求面的法向量,由直線與平面所成角的正弦值為,求得的值,再用向量法求出二面角的余弦值.【詳解】解:(1)連接交于,連接,由題意,∵,∴,∴,又面,面,∴面.(2)過作于,則在中,,,,以為原點,建立如圖所示的空間直角坐標系.設,則,,,,,,,,設向量為平面的一個法向量,則由,有,令,得;記直線與平面所成的角為,則,解得,此時;設向量為平面的一個法向量則由,有,令,得;∴二面角的余弦值為.【點睛】本題考查了線面平行的判定與證明,用向量法求線面角,二面角,還考查了學生的分析能力,空間想象能力,運算能力,屬于中檔題.21、(1);(2).【解析】(1)由直棱柱的性質(zhì)及勾股定理求出△各邊長,應用余弦定理求,進而可得其正弦值,再求邊上的高即可.(2)以為原點,,,所在直線為x軸、y軸、z軸,建立空間直角坐標系,然后求出兩個平面的法向量,然后可算出答案.【小問1詳解】如圖,連接,由題設,,,,由直棱柱性質(zhì)及,在中,在中,在中,在中,所以在△中,,則,所以到直線的距離.【小問2詳解】以為原點,,,所在直線為x軸、y軸、z軸,建立如圖所示的空間直角坐標系易知:,,,則,因為平面,所以平面的一個法向量為設平面的法向量為,則,取,則,所以,即平面與平面的夾角的余弦值為22、(1):;:(2)證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論