




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年貴州省納雍縣第五中學高二數(shù)學第一學期期末統(tǒng)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在復平面內(nèi),復數(shù)對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限2.過點作圓的切線,則切線的方程為()A. B.C.或 D.或3.已知雙曲線的左右焦點分別為、,過點的直線交雙曲線右支于A、B兩點,若是等腰三角形,且,則的周長為()A. B.C. D.4.如圖,在四棱錐中,底面ABCD是平行四邊形,已知,,,,則()A. B.C. D.5.已知等差數(shù)列的前n項和為Sn,首項a1=1,若,則公差d的取值范圍為()A. B.C. D.6.如圖,已知、分別是橢圓的左、右焦點,點、在橢圓上,四邊形是梯形,,且,則的面積為()A. B.C. D.7.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數(shù)據(jù)不清楚,那么8位員工月工資的中位數(shù)不可能是()A.5800 B.6000C.6200 D.64008.已知是空間的一個基底,若,,若,則()A B.C.3 D.9.2018年,倫敦著名的建筑事務所steynstudio在南非完成了一個驚艷世界的作品一一雙曲線建筑的教堂,白色的波浪形屋頂像翅膀一樣漂浮,建筑師通過雙曲線的設(shè)計元素賦予了這座教堂輕盈,極簡和雕塑般的氣質(zhì),如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線下支的一部分,且該雙曲線的上焦點到下頂點的距離為18,到漸近線距離為12,則此雙曲線的離心率為()A. B.C. D.10.已知圓的圓心在x軸上,半徑為1,且過點,圓:,則圓,的公共弦長為A. B.C. D.211.已知點為直線上任意一點,為坐標原點.則以為直徑的圓除過定點外還過定點()A. B.C. D.12.已知方程表示焦點在軸上的橢圓,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.以雙曲線的右焦點為圓心,為半徑的圓與的一條漸近線交于兩點,若,則雙曲線的離心率為_________14.已知點P是雙曲線右支上的一點,且以點P及焦點為定點的三角形的面積為4,則點P的坐標是_____________15.已知莖葉圖記錄了甲、乙兩組各名學生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為,乙組數(shù)據(jù)的平均數(shù)為,則的值為__________.甲組乙組16.已知過點作拋物線的兩條切線,切點分別為A、B,直線經(jīng)過拋物線C的焦點F,則___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是數(shù)列的前n項和,且.(1)求數(shù)列的通項公式;(2)若,求的前n項和.18.(12分)已知等差數(shù)列的前項和為,且,(1)求數(shù)列的通項公式;(2)若數(shù)列滿足,求數(shù)列的前項和19.(12分)如圖,在四棱錐中,平面,是等邊三角形.(1)證明:平面平面.(2)求點到平面的距離.20.(12分)已知圓C過兩點,,且圓心C在直線上(1)求圓C的方程;(2)過點作圓C的切線,求切線方程21.(12分)如圖,已知菱形ABCD的邊長為3,對角線,將△沿著對角線BD翻折至△的位置,使得,在平面ABCD上方存在一點M,且平面ABCD,(1)求證:平面平面ABD;(2)求點M到平面ABE的距離;(3)求二面角的正弦值22.(10分)已知函數(shù)(1)討論函數(shù)的單調(diào)性;(2)若對任意的,都有成立,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)復數(shù)在復平面內(nèi)的坐標表示可得答案.【詳解】解:由題意得:在復平面上對應的點為,該點在第四象限.故選:D2、C【解析】設(shè)切線的方程為,然后利用圓心到直線的距離等于半徑建立方程求解即可.【詳解】圓的圓心為原點,半徑為1,當切線的斜率不存在時,即直線的方程為,不與圓相切,當切線的斜率存在時,設(shè)切線的方程為,即所以,解得或所以切線的方程為或故選:C3、A【解析】設(shè),.根據(jù)雙曲線的定義和等腰三角形可得,再利用余弦定理可求得,從而可得的周長.【詳解】由雙曲線可得設(shè),.則,,所以,因為是等腰三角形,且,所以,即,所以,所以,,在中,由余弦定理得,即,所以,解得,的周長故選:A【點睛】關(guān)鍵點點睛:根據(jù)雙曲線的定義求解是解題關(guān)鍵.4、A【解析】利用空間向量加法法則直接求解【詳解】連接BD,如圖,則故選:A5、A【解析】該等差數(shù)列有最大值,可分析得,據(jù)此可求解.【詳解】,故,故有故d取值范圍為.故選:A6、A【解析】設(shè)點關(guān)于原點的對稱點為點,連接、,分析可知、、三點共線,設(shè)點、,設(shè)直線的方程為,分析可知,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,求出的值,可得出的值,再利用三角形的面積公式可求得結(jié)果.【詳解】設(shè)點關(guān)于原點的對稱點為點,連接、,如下圖所示:因為為、的中點,則四邊形為平行四邊形,可得且,因為,故、、三點共線,設(shè)、,易知點,,,由題意可知,,可得,若直線與軸重合,設(shè),,則,不合乎題意;設(shè)直線的方程為,聯(lián)立,可得,由韋達定理可得,得,,則,可得,故,因此,.故選:A.7、D【解析】解:∵一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當另外兩名員工的工資都小于5300時,中位數(shù)為(5300+5500)÷2=5400,當另外兩名員工的工資都大于5300時,中位數(shù)為(6100+6500)÷2=6300,∴8位員工月工資的中位數(shù)的取值區(qū)間為[5400,6300],∴8位員工月工資的中位數(shù)不可能是6400.本題選擇D選項.8、C【解析】由,可得存在實數(shù),使,然后將代入化簡可求得結(jié)果【詳解】,,因為,所以存在實數(shù),使,所以,所以,所以,得,,所以,故選:C9、A【解析】設(shè)出雙曲線的方程,根據(jù)已知條件列出方程組即可求解.【詳解】設(shè)雙曲線的方程為,由雙曲線的上焦點到下頂點的距離為18,即,上焦點的坐標為,其中一條漸近線為,上焦點到漸近線的距離為,則,解得,,即,故選:.10、A【解析】根據(jù)題意設(shè)圓方程為:,代點即可求出,進而求出方程,兩圓方程做差即可求得公共弦所在直線方程,再利用垂徑定理去求弦長.【詳解】設(shè)圓的圓心為,則其標準方程為:,將點代入方程,解得,故方程為:,兩圓,方程作差得其公共弦所在直線方程為:,圓心到該直線的距離為,因此公共弦長為,故選:A.【點睛】本題綜合考查圓的方程及直線與圓,圓與圓位置關(guān)系,屬于中檔題.一般遇見直線與圓相交問題時,常利用垂徑定理解決問題.11、D【解析】設(shè)垂直于直線,可知圓恒過垂足;兩條直線方程聯(lián)立可求得點坐標.【詳解】設(shè)垂直于直線,垂足為,則直線方程為:,由圓的性質(zhì)可知:以為直徑的圓恒過點,由得:,以為直徑的圓恒過定點.故選:D.12、D【解析】根據(jù)已知條件可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】因為方程表示焦點在軸上的橢圓,則,解得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可得,化簡整理得到,進而可求出結(jié)果.【詳解】因為雙曲線的一個焦點到其一條漸近線為,所有由題意可得,即,則,所以離心率,故答案為:.14、【解析】由題可得P到x軸的距離為1,把代入,得,可得P點坐標【詳解】設(shè),由題意知,所以,則,由題意可得,把代入,得,所以P點坐標為故答案為:15、【解析】根據(jù)中位數(shù)、平均數(shù)的定義,結(jié)合莖葉圖進行計算求解即可.【詳解】根據(jù)莖葉圖可知:甲組名學生在一次英語聽力測試中的成績分別;乙組名學生在一次英語聽力測試中的成績分別,因為甲組數(shù)據(jù)的中位數(shù)為,所以有,又因為乙組數(shù)據(jù)的平均數(shù)為,所以有,所以,故答案為:16、64【解析】用字母進行一般化研究,先求出切點弦方程,再聯(lián)立化簡,最后代入數(shù)據(jù)計算【詳解】設(shè),點處的切線方程為聯(lián)立,得由,得即,解得所以點處的切線方程為,整理得同理,點處的切線方程為設(shè)為兩切線的交點,則所以在直線上即直線AB的方程為又直線AB經(jīng)過焦點所以,即聯(lián)立得所以所以本題中所以故答案為:64【點睛】結(jié)論點睛:過點作拋物線的兩條切線,切點弦的方程為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)當時,化簡得到,進而得到數(shù)列的通項公式;(2)由(1)得到,結(jié)合裂項法,即可求解.【小問1詳解】解:由題意,數(shù)列的前n項和,且,當時,,當時,,滿足上式,所以數(shù)列的通項公式為.【小問2詳解】解:由,可得,所以.18、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)已知條件可得出關(guān)于、的方程組,解出這兩個量的值,即可求得數(shù)列的通項公式;(2)求得,利用裂項相消法可求得.【小問1詳解】解:設(shè)等差數(shù)列公差為,,【小問2詳解】解:,.19、(1)證明見解析;(2).【解析】(1)根據(jù)等邊三角形的性質(zhì)、線面垂直的性質(zhì),結(jié)合面面垂直的判定定理進行證明即可;(2)利用余弦定理,結(jié)合三棱錐的等積性進行求解即可.【小問1詳解】證明:設(shè),因為是等邊三角形,且,所以是的中點,則.又,所以,所以,即.又平面平面,所以.又,所以平面.因為平面,所以平面平面.【小問2詳解】解:因為,所以.在中,,所以,則又平面,所以.如圖,連接,則,所以.設(shè)點到平面的距離為,因為,所以,解得,即點到平面的距離為.20、(1).(或標準形式)(2)或【解析】(1)根據(jù)題意,求出中垂線方程,與直線聯(lián)立,可得圓心的坐標,求出圓的半徑,即可得答案;(2)分切線的斜率存在與不存在兩種情況討論,求出切線的方程,綜合可得答案【小問1詳解】解:根據(jù)題意,因為圓過兩點,,設(shè)的中點為,則,因為,所以的中垂線方程為,即又因為圓心在直線上,聯(lián)立,解得,所以圓心,半徑,故圓的方程為,【小問2詳解】解:當過點P的切線的斜率不存在時,此時直線與圓C相切當過點P的切線斜率k存在時,設(shè)切線方程為即(*)由圓心C到切線的距離,可得將代入(*),得切線方程為綜上,所求切線方程為或21、(1)證明見解析;(2)1;(3).【解析】(1)過E作EO垂直于BD于O,連接AO,由勾股定義易得,由菱形的性質(zhì)有,再根據(jù)線面垂直、面面垂直的判定即可證結(jié)論.(2)構(gòu)建空間直角坐標系,確定相關(guān)點的坐標,進而求的坐標及面ABE的法向量,應用空間向量的坐標運算求點面距.(3)由(2)求得面MBA的法向量,結(jié)合(2)中面ABE的法向量,應用空間向量夾角的坐標表示求二面角的余弦值,進而求其正弦值.【小問1詳解】過E作EO垂直于BD于O,連接AO,因為,,故,同理,又,所以,即因為ABCD為菱形,所以,又,所以面ABD,又面EBD,所以面面ABD【小問2詳解】以O(shè)為坐標原點,以,,分別為x軸,y軸,z軸的正方向,如圖建立空間直角坐標系,則,,,,,所以,,面ABE的法向量為,所以,令,則又,則點M到面ABE的距離為【小問3詳解】由(2)得:面ABE的一個法向量為,且,若面MBA的法向量為,則,令,則所以,故二面角正弦值為22、(1)答案見解析;(2).【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 班會課件APP制作
- 《貝塞爾函數(shù)及其應用》課件
- 一年級學生安全教育課件
- 禽類屠宰行業(yè)職業(yè)技能提升與培訓考核試卷
- 新能源技術(shù)與化妝品產(chǎn)業(yè)發(fā)展考核試卷
- 幼兒園暴風雪安全教育
- 糖果企業(yè)市場營銷渠道建設(shè)考核試卷
- 環(huán)境工程專題課件
- 航海英語閱讀與寫作能力測試考核試卷
- 《數(shù)據(jù)庫操作基礎(chǔ)第11講》課件
- 大學英語四級考試2024年12月真題(第一套)Part I Writing
- 吡侖帕奈產(chǎn)品簡介
- 高處作業(yè)力學基礎(chǔ)知識
- 洗煤廠應急救援預案
- 幼兒園科學發(fā)現(xiàn)室環(huán)境布置設(shè)計方案
- 《企業(yè)的績效管理問題與優(yōu)化策略的分析案例-以舍得酒業(yè)公司為例9100字》
- 超星爾雅學習通《移動互聯(lián)網(wǎng)時代的信息安全與防護(南京師范大學)》2025章節(jié)測試附答案
- (部編版)語文四年級上冊課外閱讀“天天練”100篇,附參考答案
- DB31∕701-2020 有色金屬鑄件單位產(chǎn)品能源消耗限額
- 統(tǒng)編版語文六年級下冊古詩詞誦讀10《清平樂》
- 社群營銷的年度工作策略計劃
評論
0/150
提交評論