版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年遼寧省盤錦市興隆臺區(qū)遼河油田二中高二上數(shù)學期末檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列為等比數(shù)列,則“,”是“為遞減數(shù)列”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則3.已知是雙曲線的左焦點,圓與雙曲線在第一象限的交點為,若的中點在雙曲線的漸近線上,則此雙曲線的離心率是()A. B.2C. D.4.在四棱錐中,底面ABCD是正方形,E為PD中點,若,,,則()A. B.C. D.5.下列結論正確的個數(shù)為()①若,則;②若,則;③若,則;④若,則A.4 B.3C.2 D.16.已知雙曲線的左右焦點分別是和,點關于漸近線的對稱點恰好落在圓上,則雙曲線的離心率為()A. B.2C. D.37.離心率為,長軸長為6的橢圓的標準方程是A. B.或C. D.或8.函數(shù)的導函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C D.9.如圖,在三棱錐中,,,,點在平面內,且,設異面直線與所成角為,則的最大值為()A. B.C. D.10.“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件11.不等式的解集為()A. B.C. D.12.執(zhí)行如圖所示的流程圖,則輸出k的值為()A.3 B.4C.5 D.2二、填空題:本題共4小題,每小題5分,共20分。13.若點到點的距離比它到定直線的距離小1,則點滿足的方程為_____________14.已知橢圓的短軸長為2,上頂點為,左頂點為,左、右焦點分別是,,且的面積為,點為橢圓上的任意一點,則的取值范圍是______.15.傳說古希臘畢達哥拉斯學派的數(shù)學家用沙粒和小石子來研究數(shù).他們根據(jù)沙?;蛐∈铀帕械男螤畎褦?shù)分成許多類,下圖中第一行的稱為三角形數(shù),第二行的稱為五邊形數(shù),則三角形數(shù)的第10項為__________,五邊形數(shù)的第項為__________.16.曲線在處的切線方程是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,有一條長度為3的線段,端點,分別在軸、軸上運動,為線段上一點,且.(1)求點的軌跡的方程;(2)已知不過原點的直線與相交于,兩點,且線段始終被直線平分.求的面積取最大時直線的方程.18.(12分)如圖,四棱錐P—ABCD中,底面ABCD是邊長為的正方形E,F(xiàn)分別為PC,BD的中點,側面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求證:EF//平面PAD;(Ⅱ)求三棱錐C—PBD的體積.19.(12分)已知橢圓的離心率為,過左焦點且垂直于長軸的弦長為.(1)求橢圓的標準方程;(2)點為橢圓的長軸上的一個動點,過點且斜率為的直線交橢圓于兩點,證明為定值.20.(12分)如圖所示,在三棱柱中,,點在平面ABC上的射影為線段AC的中點D,側面是邊長為2的菱形(1)若△ABC是正三角形,求異面直線與BC所成角的余弦值;(2)當直線與平面所成角的正弦值為時,求線段BD的長21.(12分)如圖,四棱錐中,底面為矩形,底面,,點是棱的中點(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值22.(10分)已知數(shù)列與滿足(1)若,且,求數(shù)列的通項公式;(2)設的第k項是數(shù)列的最小項,即恒成立.求證:的第k項是數(shù)列的最小項;(3)設.若存在最大值M與最小值m,且,試求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】本題可依次判斷“,”是否是“為遞減數(shù)列”的充分條件以及必要條件,即可得出結果.【詳解】若等比數(shù)列滿足、,則數(shù)列為遞減數(shù)列,故“,”是“為遞減數(shù)列”的充分條件,因為若等比數(shù)列滿足、,則數(shù)列也是遞減數(shù)列,所以“,”不是“為遞減數(shù)列”的必要條件,綜上所述,“,”是“為遞減數(shù)列”的充分不必要條件,故選:A.【點睛】本題考查充分條件以及必要條件的判定,考查等比數(shù)列以及遞減數(shù)列的相關性質,體現(xiàn)了基礎性和綜合性,考查推理能力,是簡單題.2、D【解析】通過舉反列即可得ABC錯誤,利用不等式性質可判斷D【詳解】A.當時,,但,故A錯;B.當時,,故B錯;C.當時,,但,故C錯;D.若,則,D正確故選:D3、A【解析】根據(jù)雙曲線的幾何性質和平面幾何性質,建立關于a,b,c的方程,從而可求得雙曲線的離心率得選項.【詳解】由題意可設右焦點為,因為,且圓:,所以點在以焦距為直徑的圓上,則,設的中點為點,則為的中位線,所以,則,又點在漸近線上,所以,且,則,,所以,所以,則在中,可得,,即,解得,所以,故選:A【點睛】方法點睛:(1)求雙曲線的離心率時,將提供的雙曲線的幾何關系轉化為關于雙曲線基本量的方程或不等式,利用和轉化為關于e的方程或不等式,通過解方程或不等式求得離心率的值或取值范圍(2)對于焦點三角形,要注意雙曲線定義的應用,運用整體代換的方法可以減少計算量4、C【解析】根據(jù)向量線性運算法則計算即可.【詳解】故選:C5、D【解析】根據(jù)常數(shù)函數(shù)的導數(shù)為0,可判斷①;根據(jù)冪函數(shù)的求導公式,可判斷②;根據(jù)指數(shù)函數(shù)以及對數(shù)函數(shù)的求導公式,可判斷③④.【詳解】由得:,故①錯誤;對于,,故,故②正確;對于,則,故③錯誤;對于,則,故④錯誤,故選:D6、B【解析】首先求出F1到漸近線的距離,利用F1關于漸近線的對稱點恰落在圓上,可得直角三角形,利用勾股定理得到關于ac的齊次式,即可求出雙曲線的離心率【詳解】由題意可設,則到漸近線的距離為.設關于漸近線的對稱點為M,F1M與漸近線交于A,∴MF1=2b,A為F1M的中點.又O是F1P的中點,∴OA∥F2M,∴為直角,所以△為直角三角形,由勾股定理得:,所以,所以,所以離心率故選:B.7、B【解析】試題解析:當焦點在x軸上:當焦點在y軸上:考點:本題考查橢圓的標準方程點評:解決本題的關鍵是焦點位置不同方程不同8、C【解析】構造函數(shù),利用導數(shù)分析函數(shù)的單調性,將所求不等式變形為,結合函數(shù)的單調性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)在上單調遞增不等式即,即因為,所以所以,,解得,所以不等式的解集為故選:C.9、D【解析】設線段的中點為,連接,過點在平面內作,垂足為點,證明出平面,然后以點為坐標原點,、、分別為、、軸的正方向建立空間直角坐標系,設,其中,且,求出的最大值,利用空間向量法可求得的最大值.【詳解】設線段的中點為,連接,,為的中點,則,,則,,同理可得,,,平面,過點在平面內作,垂足為點,因為,所以,為等邊三角形,故為的中點,平面,平面,則,,,平面,以點為坐標原點,、、分別為、、軸的正方向建立如下圖所示的空間直角坐標系,因為是邊長為的等邊三角形,為的中點,則,則、、、,由于點在平面內,可設,其中,且,從而,因為,則,所以,,故當時,有最大值,即,故,即有最大值,所以,.故選:D.【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結合圖形,作出所求空間角,再結合題中條件,解對應的三角形,即可求出結果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結果.10、B【解析】根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:由,得,反之不成立,如,,滿足,但是不滿足,故“”是“”的充分不必要條件故選:B11、A【解析】根據(jù)一元二次不等式的解法進行求解即可.【詳解】,故選:A.12、B【解析】根據(jù)程序框圖運行程序,直到滿足,輸出結果即可.【詳解】按照程序框圖運行程序,輸入,則,,不滿足,循環(huán);,,不滿足,循環(huán);,,不滿足,循環(huán);,,滿足,輸出結果:故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)拋物線的定義可得動點的軌跡方程【詳解】點到點的距離比它到直線的距離少1,所以點到點的距離與到直線的距離相等,所以其軌跡為拋物線,焦點為,準線為,所以方程為,故答案為:14、【解析】根據(jù)的面積和短軸長得出a,b,c的值,從而得出的范圍,得到關于的函數(shù),從而求出答案【詳解】由已知得,故,∵的面積為,∴,∴,又,∴,,∴,又,∴,∴.即的取值范圍為.故答案為點睛】本題考查了橢圓的簡單性質,函數(shù)最值的計算,熟練掌握橢圓的基本性質是解題的關鍵,屬于中檔題15、①.②.【解析】對于三角形數(shù),根據(jù)圖形尋找前后之間的關系,從而歸納出規(guī)律利用求和公式即得,對于五邊形數(shù)根據(jù)圖形尋找前后之間的關系,然后利用累加法可得通項公式.【詳解】由題可知三角形數(shù)的第1項為1,第2項為3=1+2,第3項為6=1+2+3,第4項為10=1+2+3+4,,因此,第10項為;五邊形數(shù)的第1項為,第2項為,第3項為,第4項為,…,因此,,所以當時,,當時也適合,故,即五邊形數(shù)的第項為.故答案為:55;.16、【解析】求出函數(shù)的導函數(shù),把代入即可得到切線的斜率,然后根據(jù)和斜率寫出切線的方程即可.【詳解】解:由函數(shù)知,把代入得到切線的斜率則切線方程為:,即.故答案為:【點睛】本題考查導數(shù)的幾何意義,屬于基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設,根據(jù)題意可得,,利用兩點之間的距離公式表示出,化簡即可得出結果;(2)設,,線段的中點為,利用兩點坐標表示直線斜率的公式和點差法求出直線的斜率,設的方程為,聯(lián)立橢圓方程并消去y得到關于x的一元二次方程,根據(jù)韋達定理表示、進而得出弦長,利用點到直線的距離公式求出原點到的距離,結合基本不等式計算即可.【小問1詳解】設,由為線段上一點,且,得,,又,則,整理可得,所以軌跡的方程為;【小問2詳解】設,,線段的中點為.∵在直線上,∴,∵A,在軌跡上,∴兩式相減,可得,∴,即直線的斜率為,依題意,可設直線的方程為,由可得,則解得且由韋達定理,得,∴∵原點到直線的距離為∴,當且僅當,即時等號成立,即時,三角形的面積最大,此時直線的方程為.18、(1)見解析(2)【解析】本試題主要是考查了線面平行的判定和三棱錐體積的求解的綜合問題.培養(yǎng)了同學們的推理論證能力和計算能力(1)根據(jù)已知的條件關鍵是分析出EF//PA,利用線面平行判定定理得到(2)根據(jù)上一問中的結論可知PM⊥平面ABCD.然后利用轉換頂點的思想求解棱錐的體積解:(Ⅰ)證明:連接AC,則F是AC的中點,E為PC的中點,故在CPA中,EF//PA,且PA平面PAD,EF平面PAD,∴EF//平面PAD(Ⅱ)取AD的中點M,連接PM,∵PA=PD,∴PM⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PM⊥平面ABCD.在直角PAM中,求得PM=,∴PM=19、(1);(2)證明見解析.【解析】(1)借助題設條件建立方程組求解;(2)依據(jù)題設運用直線與橢圓的位置關系探求.試題解析:(1)由,可得橢圓方程.(2)設的方程為,代入并整理得:.設,,則,同理則.所以,是定值.考點:橢圓的標準方程幾何性質及直線與橢圓的位置關系等有關知識的綜合運用【易錯點晴】本題考查的是橢圓的標準方程等基礎知識及直線與橢圓的位置關系等知識的綜合性問題.解答本題的第一問時,直接依據(jù)題設條件運用橢圓的幾何性質和橢圓的有關概念建立方程組,進而求得橢圓的標準方程為;第二問的求解過程中,先設直線的方程為,再借助二次方程中根與系數(shù)之間的關系,依據(jù)坐標之間的關系進行計算探求,從而使得問題獲解.20、(1)(2)或【解析】(1)建立空間直角坐標系,利用向量法求得直線與所成角的余弦值.(2)結合直線與平面所成的角,利用向量法列方程,化簡求得的長.【小問1詳解】依題意點在平面ABC上的射影為線段AC的中點D,所以平面,,由于,所以,以為空間坐標原點建立如圖所示空間直角坐標系,,,當是等邊三角形時,,.設直線與所成角為,則.【小問2詳解】設,則,,設平面的法向量為,則,故可設,設直線與平面所成角為,則,化簡的,解得或,也即或.21、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 正直之劍斬斷荊棘
- 2025年度個人股權并購與整合合同8篇
- 2025年度個人分紅協(xié)議書針對知識產權交易分紅3篇
- 2025年度個人小產權房屋買賣合同范本與租賃權優(yōu)先購買權4篇
- 2025年度城市公共停車場租賃與車位分配服務合同范本
- 2025年個人房屋抵押貸款保證合同模板
- 2025年度個人與個人間租賃合同(含租賃雙方權利義務)
- 2025年全球及中國可充18650鋰電池行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國抗紫外線永久性乳液粘合劑行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2024年全國青少年禁毒知識競賽小學組題庫及答案(共60題)
- 2025-2030年中國草莓市場競爭格局及發(fā)展趨勢分析報告
- 第二章《有理數(shù)的運算》單元備課教學實錄2024-2025學年人教版數(shù)學七年級上冊
- 華為智慧園區(qū)解決方案介紹
- 奕成玻璃基板先進封裝中試線項目環(huán)評報告表
- 廣西壯族自治區(qū)房屋建筑和市政基礎設施全過程工程咨詢服務招標文件范本(2020年版)修訂版
- 人教版八年級英語上冊期末專項復習-完形填空和閱讀理解(含答案)
- 2024新版有限空間作業(yè)安全大培訓
- GB/T 44304-2024精細陶瓷室溫斷裂阻力試驗方法壓痕(IF)法
- 年度董事會工作計劃
- 《退休不褪色余熱亦生輝》學校退休教師歡送會
- 02R112拱頂油罐圖集
評論
0/150
提交評論