版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年河南省鄭州市實驗中學(xué)高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,,表示數(shù)列的前項和,則()A.43 B.44C.45 D.462.一物體做直線運(yùn)動,其位移(單位:)與時間(單位:)的關(guān)系是,則該物體在時的瞬時速度是A. B.C. D.3.雙曲線(,)的一條漸近線的傾斜角為,則離心率為()A. B.C.2 D.44.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的中心為原點,焦點,均在y軸上,橢圓C的面積為,且短軸長為,則橢圓C的標(biāo)準(zhǔn)方程為()A. B.C. D.5.已知,,若不等式恒成立,則正數(shù)的最小值是()A.2 B.4C.6 D.86.?dāng)?shù)列,則是這個數(shù)列的第()A.項 B.項C.項 D.項7.函數(shù)的大致圖象為A. B.C. D.8.函數(shù)的導(dǎo)數(shù)為()A.B.CD.9.已知A,B,C三點不共線,O是平面ABC外一點,下列條件中能確定點M與點A,B,C一定共面的是A. B.C. D.10.若拋物線的焦點與橢圓的右焦點重合,則的值為A. B.C. D.11.已知數(shù)列的前項和滿足,記數(shù)列的前項和為,.則使得的值為()A. B.C. D.12.已知曲線C的方程為,則下列結(jié)論正確的是()A.當(dāng)時,曲線C為圓B.“”是“曲線C為焦點在x軸上的雙曲線”的充分而不必要條件C.“”是“曲線C為焦點在x軸上的橢圓”的必要而不充分條件D.存在實數(shù)k使得曲線C為雙曲線,其離心率為二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)是函數(shù)的導(dǎo)函數(shù),,對任意實數(shù)都有,則不等式的解集為___________.14.已知函數(shù),則曲線在點處的切線方程為___________15.如圖,在四棱錐中,是邊長為4的等邊三角形,四邊形ABCD是等腰梯形,,,,若四棱錐的體積為24,則四棱錐外接球的表面積是___________.16.已知點是拋物線上的兩點,,點是拋物線的焦點,若,則的值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知直線.(1)若,求直線與直線的交點坐標(biāo);(2)若直線與直線垂直,求a的值.18.(12分)設(shè)數(shù)列的前項和為,已知,且.(1)證明:數(shù)列為等比數(shù)列;(2)若,是否存在正整數(shù),使得對任意恒成立?若存在、求的值;若不存在,說明理由.19.(12分)設(shè)函數(shù),(1)求的最大值;(2)求證:對于任意x∈(1,7),e1-x+20.(12分)如圖,四邊形是正方形,平面,,(1)證明:平面平面;(2)若與平面所成角為,求二面角的余弦值21.(12分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點E為的中點.(1)證明:平面;(2)求二面角的余弦值.22.(10分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)等差數(shù)列的性質(zhì),求得,結(jié)合等差數(shù)列的求和公式,即可求解.【詳解】由等差數(shù)列中,滿足,根據(jù)等差數(shù)列的性質(zhì),可得,所以,則.故選:C.2、A【解析】先對求導(dǎo),然后將代入導(dǎo)數(shù)式,可得出該物體在時的瞬時速度【詳解】對求導(dǎo),得,,因此,該物體在時的瞬時速度為,故選A【點睛】本題考查瞬時速度的概念,考查導(dǎo)數(shù)與瞬時變化率之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題3、C【解析】根據(jù)雙曲線方程寫出漸近線方程,得出,進(jìn)而可求出雙曲線的離心率.【詳解】因為雙曲線的漸近線方程為,又其中一條漸近線的傾斜角為,所以,則,所以該雙曲線離心率為.故選:C.4、C【解析】設(shè)出橢圓的標(biāo)準(zhǔn)方程,根據(jù)已知條件,求得,即可求得結(jié)果.【詳解】因為橢圓的焦點在軸上,故可設(shè)其方程為,根據(jù)題意可得,,故可得,故所求橢圓方程為:.故選:C.5、B【解析】由基本不等式求出的最小值,只需最小值大于等于18,得到關(guān)于的不等式,求解,即可得出結(jié)論.【詳解】,因為不等式恒成立,所以,即,解得,所以.故選:B.【點睛】本題考查基本不等式的應(yīng)用,考查一元二次不等式的解法,屬于基礎(chǔ)題.6、A【解析】根據(jù)數(shù)列的規(guī)律,求出通項公式,進(jìn)而求出是這個數(shù)列的第幾項【詳解】數(shù)列為,故通項公式為,是這個數(shù)列的第項.故選:A.7、D【解析】根據(jù)函數(shù)奇偶性排除A、C.當(dāng)時排除B【詳解】解:由可得所以函數(shù)為偶函數(shù),排除A、C.因為時,,排除B.故選:D.8、B【解析】由導(dǎo)數(shù)運(yùn)算法則可求出.【詳解】,.故選:B.9、D【解析】首先利用坐標(biāo)法,排除錯誤選項,然后對符合的選項驗證存在使得,由此得出正確選項.【詳解】不妨設(shè).對于A選項,,由于的豎坐標(biāo),故不在平面上,故A選項錯誤.對于B選項,,由于的豎坐標(biāo),故不在平面上,故B選項錯誤.對于C選項,,由于的豎坐標(biāo),故不在平面上,故C選項錯誤.對于D選項,,由于的豎坐標(biāo)為,故在平面上,也即四點共面.下面證明結(jié)論一定成立:由,得,即,故存在,使得成立,也即四點共面.故選:D.【點睛】本小題主要考查空間四點共面的證明方法,考查空間向量的線性運(yùn)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.10、D【解析】解:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則,故選D11、B【解析】由,求得,得到,結(jié)合裂項法求和,即可求解.【詳解】數(shù)列的前項和滿足,當(dāng)時,;當(dāng)時,,當(dāng)時,適合上式,所以,則,所以.故選:B.12、C【解析】根據(jù)橢圓、雙曲線的定義及簡單幾何性質(zhì)計算可得;【詳解】解:由題意,曲線C的方程為,對于A中,當(dāng)時,曲線C的方程為,此時曲線C表示橢圓,所以A錯誤;對于B中,當(dāng)曲線C的方程為表示焦點在x軸上的雙曲線時,則滿足,解得,所以“”是“曲線C為焦點在x軸上的雙曲線”的必要不充分條件,所以B不正確;對于C中,當(dāng)曲線C的方程為表示焦點在x軸上的橢圓時,則滿足,解得,所以“”是“曲線C為焦點在x軸上的雙曲線”的必要不充分條件,所以C正確;對于D中,當(dāng)曲線C的方程為表示雙曲線,且離心率為時,此時雙曲線的實半軸長等于虛半軸長,此時,解得,此時方程表示圓,所以不正確.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】令則,∴在R上是減函數(shù)又等價于∴故不等式的解集是答案:點睛:本題考查用構(gòu)造函數(shù)的方法解不等式,即通過構(gòu)造合適的函數(shù),利用函數(shù)的單調(diào)性求得不等式的解集,解題時要注意常見的函數(shù)類型,如在本題中由于涉及到,故可從以下兩種情況入手解決:(1)對于,可構(gòu)造函數(shù);(2)對于,可構(gòu)造函數(shù)14、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用點斜式求切線方程.【詳解】解:因,所以,又故切線方程為,整理為,故答案為:15、##【解析】根據(jù)球的截面圓圓心與球心的連線垂直截面可確定垂直平面ABCD,構(gòu)造直角三角形求解球的半徑即可得解.【詳解】如圖,分別取BC,AD的中點,E,連接PE,,,.因為是邊長為4的等邊三角形,所以.因為四邊形ABCD是等腰梯形,,,,所以,.因為四棱錐的體積為24,所以,所以.因為E是AD的中點,所以.因為,所以平面ABCD.因為,所以四邊形ABCD外接圓的圓心為,半徑.設(shè)四棱錐外接球的球心為O,連接,OP,OB,過點О作,垂足為F.易證四邊形是矩形,則,.設(shè)四棱錐外接球的半徑為R,則,即,解得,故四棱錐外接球的表面積是.故答案為:16、10【解析】由拋物線的定義根據(jù)題意可知求得p,代入拋物線方程,分別求得y1,y2的值,即可求得y12+y2的值【詳解】由拋物線的定義可得,依據(jù)題設(shè)可得,則(舍去負(fù)值),故,故填.【點睛】本題考查拋物線的定義和性質(zhì),利用已知相等關(guān)系求解拋物線方程,然后求解已知點的縱坐標(biāo),解題中需要熟練拋物的定義和性質(zhì),靈活應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)聯(lián)立兩直線方程,解方程組即可得解;(2)根據(jù)兩直線垂直列出方程,解之即可得出答案.【小問1詳解】解:當(dāng)時,直線,聯(lián)立,解得,即交點坐標(biāo)為;【小問2詳解】解:直線與直線垂直,則,解得.18、(1)證明見解析(2)【解析】(1)由已知條件有,根據(jù)等比數(shù)列的定義即可證明;(2)由(1)求出及,進(jìn)而可得,利用二次函數(shù)的性質(zhì)即可求解的最小值,從而可得答案.【小問1詳解】證明:因為,所以,又因為,所以,所以數(shù)列是首項為2公比為2的等比數(shù)列;【小問2詳解】解:由(1)知,,所以,所以,檢驗時也滿足上式,所以,所以,令,所以,故當(dāng)即時,取得最小值,所以.19、(1)(2)證明見解析【解析】(1)求出,討論其導(dǎo)數(shù)后可得原函數(shù)的單調(diào)性,從而可得函數(shù)的最大值.(2)先證明任意的,總有,再利用放縮法和換元法將不等式成立問題轉(zhuǎn)化為任意恒成立,后者可利用導(dǎo)數(shù)證明.【小問1詳解】,當(dāng)時,;當(dāng)時,,故在上為增函數(shù),在上為減函數(shù),故.【小問2詳解】因為,故當(dāng)時,,即,而在為減函數(shù),故在上有,故任意的,總有.要證任意恒成立,即證:任意恒成立,即證:任意恒成立,由(1)可得,任意,有即,故即證:任意恒成立,設(shè),即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,即證:任意恒成立,設(shè),則,而在為增函數(shù),,故存在,使得,且時,,時,,故在為減函數(shù),在為增函數(shù),故任意,總有,故任意恒成立,所以任意恒成立.【點睛】思路點睛:不等式的恒成立,可結(jié)合不等式的形式將其轉(zhuǎn)化為若干段上的不等式的恒成立,在每段上可采用不同的方式(導(dǎo)數(shù)、放縮法等)進(jìn)行處理.20、(1)證明見解析;(2).【解析】(1)連接與交于點O,易得平面,取的中點M,易得為平行四邊形,即,得到平面,然后利用面面垂直的判定定理證明;(2)以A為坐標(biāo)原點,分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),根據(jù)與平面所成角為,由,解得,然后分別求得平面的一個法向量,平面的一個法向量,由求解.【詳解】(1)如圖所示:連接與交于點O,因為為正方形,故,又平面,故,由,故平面,取的中點M,連接,注意到為的中位線,故,且,因此,且,故為平行四邊形,即,因此平面,而平面,故平面平面(2)以A坐標(biāo)原點,分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),則,由(1)可知平面,因此平面的一個法向量為,而,由與平面所成角為,得,即,解得;則,設(shè)平面的一個法向量為,則得令,則,故設(shè)平面的一個法向量,則得令,則,,故所以,注意到二面角為鈍二面角,故二面角的余弦值為21、(1)見解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內(nèi)作BE的平行線即可;(2)求二面角的大小,可以用空間向量進(jìn)行求解,根據(jù)已知條件,以AD中點O為原點,OB,AD,OP分別為x、y、z軸建立坐標(biāo)系﹒【小問1詳解】如圖,取PD中點F,連接EF,F(xiàn)C﹒∵E是AP中點,∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小問2詳解】取AD中點O,連接OP,OB,∵是以為斜邊等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智慧養(yǎng)老民房管理服務(wù)合同4篇
- 二零二五年度門窗五金件國際貿(mào)易與物流服務(wù)合同4篇
- 北極生態(tài)環(huán)境解讀模板
- 鋼結(jié)構(gòu)立柱施工方案
- 2025年度個人醫(yī)療健康保險分期繳費(fèi)協(xié)議4篇
- 2025年度個人職業(yè)規(guī)劃服務(wù)合同范本4篇
- 2024年信息化系統(tǒng)管理制度
- 貴州打水井施工方案
- 二零二五年度門類安裝工程材料供應(yīng)與安裝合同4篇
- 2024水泥欠款利息減免談判合同范本3篇
- 《色彩基礎(chǔ)》課程標(biāo)準(zhǔn)
- 人力資源 -人效評估指導(dǎo)手冊
- 大疆80分鐘在線測評題
- 2023年成都市青白江區(qū)村(社區(qū))“兩委”后備人才考試真題
- 2024中考復(fù)習(xí)必背初中英語單詞詞匯表(蘇教譯林版)
- 《現(xiàn)代根管治療術(shù)》課件
- 肩袖損傷的護(hù)理查房課件
- 2023屆北京市順義區(qū)高三二模數(shù)學(xué)試卷
- 公司差旅費(fèi)報銷單
- 2021年上海市楊浦區(qū)初三一模語文試卷及參考答案(精校word打印版)
- 八年級上冊英語完形填空、閱讀理解100題含參考答案
評論
0/150
提交評論