2023-2024學年天津市和平區(qū)高二上數(shù)學期末復習檢測試題含解析_第1頁
2023-2024學年天津市和平區(qū)高二上數(shù)學期末復習檢測試題含解析_第2頁
2023-2024學年天津市和平區(qū)高二上數(shù)學期末復習檢測試題含解析_第3頁
2023-2024學年天津市和平區(qū)高二上數(shù)學期末復習檢測試題含解析_第4頁
2023-2024學年天津市和平區(qū)高二上數(shù)學期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年天津市和平區(qū)高二上數(shù)學期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為F,點A在拋物線上,直線FA與拋物線的準線交于點M,O為坐標原點.若,且,則()A.1 B.2C.3 D.42.若直線的斜率為,則的傾斜角為()A. B.C. D.3.在等比數(shù)列中,,,則()A.2 B.4C.6 D.84.函數(shù)在上的極大值點為()A. B.C. D.5.若,則()A. B.C. D.6.已知雙曲線的對稱軸為坐標軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或7.通過隨機詢問110名不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:男女總計愛好402060不愛好203050總計6050110由附表:0.0500.0100.0013.8416.63510.828參照附表,得到的正確結論是()A.有99%以上的把握認為“愛好該項運動與性別有關”B.有99%以上的把握認為“愛好該項運動與性別無關”C.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”D.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”8.已知等差數(shù)列為其前項和,且,且,則()A.36 B.117C. D.139.若直線經過,,兩點,則直線的傾斜角的取值范圍是()A. B.C. D.10.等比數(shù)列的各項均為正數(shù),已知向量,,且,則A.12 B.10C.5 D.11.正方體的表面積為,則正方體外接球的表面積為(

)A. B.C. D.12.在等比數(shù)列中,若,則公比()A. B.C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.設圓,圓,則圓有公切線___________條.14.命題“,”是真命題,則的取值范圍是________15.已知,則曲線在點處的切線方程是______.16.,利用課本中推導等差數(shù)列前項和的公式的方法,可求得______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列{}的首項=2,(n≥2,),,.(1)證明:{+1}為等比數(shù)列;(2)設數(shù)列{}的前n項和,求證:.18.(12分)如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M、N分別是AB、PC的中點(1)求證:平面MND⊥平面PCD;(2)求點P到平面MND的距離19.(12分)有兩位射擊運動員在一次射擊測試中各射靶7次,每次命中的環(huán)數(shù)如下:甲6978856乙a398964經計算可得甲、乙兩名射擊運動員的平均成績是一樣的(1)求實數(shù)a的值;(2)請通過計算,判斷甲、乙兩名射擊運動員哪一位的成績更穩(wěn)定?20.(12分)已知三點共線,其中是數(shù)列中的第n項.(1)求數(shù)列的通項;(2)設,求數(shù)列的前n項和.21.(12分)已知公差不為0的等差數(shù)列,前項和為,首項為,且成等比數(shù)列.(1)求和;(2)設,記,求.22.(10分)已知集合,(1)若,求m的取值范圍;(2)若“x∈B”是“x∈A”的充分不必要條件,求m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設,由和在拋物線上,求出和,利用求出p.【詳解】過A作AP垂直x軸與P.拋物線的焦點為,準線方程為.設,因為,所以,解得:.因為在拋物線上,則.所以,即,解得:.故選:D2、C【解析】設直線l傾斜角為,根據(jù)題意得到,即可求解.【詳解】設直線l的傾斜角為,因為直線的斜率是,可得,又因為,所以,即直線的傾斜角為.故選:C.3、D【解析】由等比中項轉化得,可得,求解基本量,由等比數(shù)列通項公式即得解【詳解】設公比為,則由,得,即故,解得故選:D4、C【解析】求出函數(shù)的導數(shù),利用導數(shù)確定函數(shù)的單調性,即可求出函數(shù)的極大值點【詳解】,∴當時,,單調遞減,當時,,單調遞增,當時,,單調遞減,∴函數(shù)在的極大值點為故選:C5、D【解析】設,計算出、的值,利用平方差公式可求得結果.【詳解】設由已知可得,,因此,.故選:D.6、B【解析】分雙曲線的焦點在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點在軸上,則有,則雙曲線的離心率為;若焦點在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點睛】本題考查雙曲線離心率的求解,在雙曲線的焦點位置不確定的情況下,要對雙曲線的焦點位置進行分類討論,考查計算能力,屬于基礎題.7、A【解析】由,而,故由獨立性檢驗的意義可知選A8、B【解析】根據(jù)等差數(shù)列下標的性質,,進而根據(jù)條件求出,然后結合等差數(shù)列的求和公式和下標性質求得答案.【詳解】由題意,,即為遞增數(shù)列,所以,又,又,聯(lián)立方程組解得:.于是,.故選:B.9、D【解析】應用兩點式求直線斜率得,結合及,即可求的范圍.【詳解】根據(jù)題意,直線經過,,,∴直線的斜率,又,∴,即,又,∴;故選:D10、C【解析】利用數(shù)量積運算性質、等比數(shù)列的性質及其對數(shù)運算性質即可得出【詳解】向量=(,),=(,),且?=4,∴+=4,由等比數(shù)列的性質可得:=……===2,則log2(?)=故選C【點睛】本題考查數(shù)量積運算性質、等比數(shù)列的性質及其對數(shù)運算性質,考查推理能力與計算能力,屬于中檔題11、B【解析】由正方體表面積求得棱長,再求得正方體的對角線長,即為外接球的直徑,從而可得球表面積【詳解】設正方體棱長為,由得,正方體對角線長,所以其外接球半徑為,球表面積為故選:B12、C【解析】由題得,化簡即得解.【詳解】因為,所以,所以,解得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】將圓轉化成標準式,結合圓心距判斷兩圓位置關系,進而求解.【詳解】由題意得,圓:,圓:,∴,∴與相交,有2條公切線.故答案為:214、【解析】依題意可得,是真命題,參變分離得到在上有解,再利用構造函數(shù)利用函數(shù)的單調性計算可得.【詳解】,等價于在上有解設,,則在上單調遞減,在上單調遞增,又,,所以,即故答案為:15、【解析】求導,得到,寫出切線方程.【詳解】因為,所以,則,所以曲線在點處的切線方程是,即,故答案為:16、2020【解析】先證得,利用倒序相加法求得表達式值.【詳解】解:由題意可知,令S=則S=兩式相加得,故填:【點睛】本題考查借助倒序相加求函數(shù)值的和,屬于中檔題,解題關鍵是找到的規(guī)律三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)利用已知條件證明為常數(shù)即可;(2)求出和通項公式,再求出通項公式,利用裂項相消法可求,判斷的單調性即可求其范圍.【小問1詳解】∵=2,(n≥2,),∴當n≥2時,(常數(shù)),∴數(shù)列{+1}是公比為3的等比數(shù)列;【小問2詳解】由(1)知,數(shù)列{+1}是以3為首項,以3為公比的等比數(shù)列,∴,∴,∴∵,∴∴,∴∴.當n≥2時,∴{}為遞增數(shù)列,故的最小值為,∴.18、(1)見解析;(2)【解析】(1)作出如圖所示空間直角坐標系,根據(jù)題中數(shù)據(jù)可得、、的坐標,利用垂直向量數(shù)量積為零的方法算出平面、平面的法向量分別為,,和,1,,算出,可得,從而得出平面平面;(2)由(1)中求出的平面法向量,,與向量,2,,利用點到平面的距離公式加以計算即可得到點到平面的距離【詳解】(1)證明:平面,,、、兩兩互相垂直,如圖所示,分別以、、所在直線為軸、軸和軸建立空間直角坐標系,則,0,,,0,,,2,,,2,,,0,,,0,,,1,,,1,,,1,,,2,設,,是平面的一個法向量,可得,取,得,,,,是平面的一個法向量,同理可得,1,是平面的一個法向量,,,即平面的法向量與平面的法向量互相垂直,可得平面平面;(2)解:由(1)得,,是平面的一個法向量,,2,,得,點到平面的距離19、(1)10;(2)甲的成績比乙更穩(wěn)定.【解析】(1)根據(jù)甲乙成績求他們的平均成績,由平均成績相等列方程求參數(shù)a的值.(2)由已知數(shù)據(jù)及(1)的結果,求甲乙的方差并比較大小,即可知哪位運動員成績更穩(wěn)定.【小問1詳解】由題意,甲的平均成績?yōu)?,乙的平均成績?yōu)?,又甲、乙兩名射擊運動員的平均成績是一樣的,有,解得,故實數(shù)a為10;【小問2詳解】甲的方差,乙的方差,由,知:甲的成績比乙更穩(wěn)定.20、(1)(2)【解析】(1)由三點共線可知斜率相等,即可得出答案;(2)由題可得,利用錯位相減法即可求出答案.【小問1詳解】三點共線,【小問2詳解】①②①—②得21、(1)(2)【解析】(1)由題意解得等差數(shù)列的公差,代入公式即可求得和;(2)把n分為奇數(shù)和偶數(shù)兩類,分別去數(shù)列的前n項和.【小問1詳解】設等差數(shù)列公差為,由題有,即,解之得或0,又,所以,所以.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論