版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆安徽定遠縣爐橋中學數(shù)學高二上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸入,則輸出的m的值是()A.-1 B.0C.0.1 D.12.設數(shù)列、都是等差數(shù)列,若,則等于()A. B.C. D.3.已知直線l:過橢圓的左焦點F,與橢圓在x軸上方的交點為P,Q為線段PF的中點,若,則橢圓的離心率為()A. B.C. D.4.阿基米德(公元前287年~公元前212年)不僅是著名物理學家,也是著名的數(shù)學家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的對稱軸為坐標軸,焦點在軸上,且橢圓的離心率為,面積為,則橢圓的標準方程為()A B.C. D.5.直線與直線交于點Q,m是實數(shù),O為坐標原點,則的最大值是()A.2 B.C. D.46.已知數(shù)列滿足,,則()A. B.C.1 D.27.已知直線方程為,則其傾斜角為()A.30° B.60°C.120° D.150°8.已知橢圓與雙曲線有相同的焦點、,橢圓的離心率為,雙曲線的離心率為,點P為橢圓與雙曲線的交點,且,則當取最大值時的值為()A. B.C. D.9.一部影片在4個單位輪流放映,每個單位放映一場,不同的放映次序有()A.種 B.4種C.種 D.種10.記不超過x的最大整數(shù)為,如,.已知數(shù)列的通項公式,則使的正整數(shù)n的最大值為()A.5 B.6C.15 D.1611.《萊茵德紙草書》(RhindPapyrus)是世界上最古老的數(shù)學著作之一.書中有這樣一道題目:把93個面包分給5個人,使每個人所得面包個數(shù)成等比數(shù)列,且使較小的兩份之和等于中間一份的四分之三,則最大的一份是()個A.12 B.24C.36 D.4812.已知是兩條不同的直線,是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分又不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.棱長為的正方體的頂點到截面的距離等于__________.14.已知函數(shù),則滿足實數(shù)的取值范圍是__15.將邊長為2的正方形繞其一邊所在的直線旋轉(zhuǎn)一周,所得的圓柱體積為________.16.已知橢圓,分別是橢圓的上、下頂點,是左頂點,為左焦點,直線與相交于點,則________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求證:(1)是上的偶函數(shù);(2)是上的奇函數(shù).18.(12分)如圖,在四棱錐中,底面為矩形,平面平面,.(1)證明:平面平面;(2)若,為棱的中點,,,求二面角的余弦值19.(12分)如圖,在三棱錐A-BCD中,O為線段BD中點,是邊長為1正三角形,且OA⊥BC,AB=AD(1)證明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE與平面BCD的夾角的余弦值20.(12分)雙曲線的離心率為2,經(jīng)過C的焦點垂直于x軸的直線被C所截得的弦長為12.(1)求C的方程;(2)設A,B是C上兩點,線段AB的中點為,求直線AB的方程.21.(12分)在直三棱柱中,,,,,分別是,上的點,且(1)求證:∥平面;(2)求平面與平面所成銳二面角的余弦值22.(10分)已知函數(shù)(a為非零常數(shù))(1)若f(x)在處的切線經(jīng)過點(2,ln2),求實數(shù)a的值;(2)有兩個極值點,.①求實數(shù)a的取值范圍;②若,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】計算后,根據(jù)判斷框直接判斷即可得解.【詳解】輸入,計算,判斷為否,計算,輸出.故選:B.2、A【解析】設等差數(shù)列的公差為,根據(jù)數(shù)列是等差數(shù)列可求得,由此可得出,進而可求得所求代數(shù)式的值.【詳解】設等差數(shù)列的公差為,即,由于數(shù)列也為等差數(shù)列,則,可得,即,可得,即,解得,所以,數(shù)列為常數(shù)列,對任意的,,因此,.故選:A.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列基本量的求解,通過等差數(shù)列定義列等式求解公差是解題的關(guān)鍵,另外,在求解有關(guān)等差數(shù)列基本問題時,可充分利用等差數(shù)列的定義以及等差中項法來求解.3、D【解析】由直線的傾斜角為,可得,結(jié)合,可推得是等邊三角形,可得,計算可得離心率【詳解】直線:過橢圓的左焦點,設橢圓的右焦點為,所以,又是的中點,是的中點,所以,又,所以,又,所以是等邊三角形,所以,又在橢圓上,所以,所以,所以離心率為,故選:4、C【解析】由題意,設出橢圓的標準方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.5、B【解析】求出兩直線的交點坐標,結(jié)合兩點間的距離公式得到,進而可以求出結(jié)果.【詳解】因為與的交點坐標為所以,當時,,所以的最大值是,故選:B.6、C【解析】結(jié)合遞推關(guān)系式依次求得的值.【詳解】因為,,所以,得由,得.故選:C7、D【解析】由直線方程可得斜率,根據(jù)斜率與傾斜角的關(guān)系即可求傾斜角大小.【詳解】由題設,直線斜率,若直線的傾斜角為,則,∵,∴.故選:D8、D【解析】由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得,,的關(guān)系,由此可得,再利用重要不等式求最值,并求此時的的值.【詳解】設為第一象限的交點,、,則、,解得、,在中,由余弦定理得:,∴,∴,∴,∴,∴,,即,當且僅當,即,時等號成立,此時故選:D9、C【解析】根據(jù)題意得到一部影片在4個單位輪流放映,相當于四個單位進行全排列,即可得到答案.【詳解】一部影片在4個單位輪流放映,相當于四個單位進行全排列,所以不同的放映次序有種,故選:C10、C【解析】根據(jù)取整函數(shù)的定義,可求出的值,即可得到答案;【詳解】,,,,,,當時,,使的正整數(shù)n的最大值為,故選:C11、D【解析】設等比數(shù)列的首項為,公比,根據(jù)題意,由求解.【詳解】設等比數(shù)列的首項為,公比,由題意得:,即,解得,所以,故選:D12、B【解析】根據(jù)垂直關(guān)系的性質(zhì)可判斷.【詳解】由題,,則或,若,則或或與相交,故充分性不成立;若,則必有,故必要性成立,所以“”是“”的必要不充分條件.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)勾股定理可以計算出,這樣得到是直角三角形,利用等體積法求出點到的距離.【詳解】解:如圖所示,在三棱錐中,是三棱錐的高,,在中,,,,所以是直角三角形,,設點到的距離為,.故A到平面的距離為故答案為:【點睛】本題考查了點到線的距離,利用等體積法求出點到面的距離.是解題的關(guān)鍵.14、【解析】分別對,分別大于1,等于1,小于1的討論,即可.【詳解】對,分別大于1,等于1,小于1的討論,當,解得當,不存在,當時,,解得,故x的范圍為點睛】本道題考查了分段函數(shù)問題,分類討論,即可,難度中等15、【解析】依題意可得圓柱的底面半徑、高,再根據(jù)圓柱的體積公式計算可得;【詳解】解:依題意可得圓柱的底面半徑,高,所以;故答案為:16、##【解析】先求出頂點和焦點坐標,求出直線直線與的斜率,利用到角公式求出的正切值,進而求出正弦值.【詳解】由可得:,所以,,,,故,由到角公式得:,其中,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解(2)證明見詳解【解析】利用函數(shù)奇偶性的定義證明即可【小問1詳解】由題意函數(shù)定義域為且故是上的偶函數(shù)【小問2詳解】由題意函數(shù)定義域為且故是上奇函數(shù)18、(1)見解析;(2)【解析】分析:(1)由四邊形為矩形,可得,再由已知結(jié)合面面垂直的性質(zhì)可得平面,進一步得到,再由,利用線面垂直的判定定理可得面,即可證得平面;(2)取的中點,連接,以為坐標原點,建立如圖所示的空間直角坐標系,由題得,解得.進而求得平面和平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值.詳解:(1)證明:∵四邊形ABCD是矩形,∴CD⊥BC.∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,CD平面ABCD,∴CD⊥平面PBC,∴CD⊥PB.∵PB⊥PD,CD∩PD=D,CD、PD平面PCD,∴PB⊥平面PCD.∵PB平面PAB,∴平面PAB⊥平面PCD.(2)設BC中點為,連接,,又面面,且面面,所以面.以為坐標原點,的方向為軸正方向,為單位長,建立如圖所示的空間直角坐標系.由(1)知PB⊥平面PCD,故PB⊥,設,可得所以由題得,解得.所以設是平面的法向量,則,即,可取.設是平面的法向量,則,即,可取.則,所以二面角的余弦值為.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關(guān)鍵在于能利用直線與直線、直線與平面、平面與平面關(guān)系的相互轉(zhuǎn)化,通過嚴密推理,明確角的構(gòu)成.同時對于立體幾何中角的計算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.19、(1)證明見解析(2)【解析】(1)由題意可得OA⊥平面BCD,從而可證明.(2)作OF⊥BD交BC于點F,如圖,以O為坐標原點,分別以OF,OD,OA所在直線軸建立空間直角坐標系,利用向量法可求解.【小問1詳解】因為AB=AD,O為BD中點,所以OA⊥BD因為OA⊥BC,且BD,BC平面BCD,BD∩BC=B,所以OA⊥平面BCD又因為OA平面ABD,所以平面ABD⊥平面BCD【小問2詳解】作OF⊥BD交BC于點F,如圖,以O為坐標原點,分別以OF,OD,OA所在直線軸建立空間直角坐標系因為三角形OCD為邊長為1的正三角形,且OA=OB=1,DE=2AE所以A(0,0,1),B(0,-1,0),設平面EBC的法向量為=()因為⊥BE,⊥BC,所以令,則,,所以已知平面BCD的法向量所以所以平面EBC與平面BCD的夾角的余弦值為20、(1)(2)【解析】(1)根據(jù)已知條件求得,由此求得的方程.(2)結(jié)合點差法求得直線的斜率,從而求得直線的方程.【小問1詳解】因為C的離心率為2,所以,可得.將代入可得,由題設.解得,,,所以C的方程為.【小問2詳解】設,,則,.因此,即.因為線段AB的中點為,所以,,從而,于是直線AB的方程是.21、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,由空間向量證明與平面的法向量垂直(2)由空間向量求解【小問1詳解】以C為原點,分別為軸建立空間直角坐標系,如圖,則,,,,,,設,因為,所以,故,得,同理求得,所以,因為是平面的一個法向量,且,所以,又平面,所以平面;【小問2詳解】由(1)可得:,,設平面的一個法向量為,則,即令,則,所以,又平面的一個法向量為,設表示平面與平面所成銳二面角,則22、(1)(2)①(0,1);②證明見解析【解析】小問1先求出切線方程,再將點(2,ln2),代入即可求出a的值;小問2的①通過求導,再結(jié)合函數(shù)的單調(diào)性求出a的取值范圍;②結(jié)合已知條件,構(gòu)造新函數(shù)即可得到證明.【小問1詳解】,∴切線方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度海洋工程裝備租賃及維護合同3篇
- 2025年滬科版七年級物理下冊階段測試試卷
- 2025年人教版(2024)八年級物理上冊階段測試試卷
- 2025年華師大版九年級數(shù)學上冊階段測試試卷含答案
- 2025年北師大版共同必修2物理下冊階段測試試卷含答案
- 2025年滬教版七年級科學下冊階段測試試卷含答案
- 2025年滬教版八年級數(shù)學上冊月考試卷
- 二零二五年度膩子產(chǎn)品知識產(chǎn)權(quán)保護合作協(xié)議3篇
- 2024版三人合股股東合作協(xié)議書
- 二零二五年度電子商務平臺合同糾紛仲裁規(guī)則與實務3篇
- GA/T 537-2005母線干線系統(tǒng)(母線槽)阻燃、防火、耐火性能的試驗方法
- 錄用通知書郵件
- 影響健康的主要因素課件
- 小學三年級數(shù)學軸對稱圖形練習題
- 【自考練習題】大連交通大學概率論與數(shù)理統(tǒng)計真題匯總(附答案解析)
- 布袋除塵器分部分項驗收記錄表完整
- 公路工程質(zhì)量鑒定辦法
- 水果購銷合同模板(精選5篇)
- 板框壓濾機方案具體方案模板
- 鉆探工程編錄方法課件
- 物理奧賽:力學物體的平衡31-優(yōu)質(zhì)課件
評論
0/150
提交評論