2023-2024學(xué)年云南省通海三中數(shù)學(xué)高二上期末聯(lián)考試題含解析_第1頁
2023-2024學(xué)年云南省通海三中數(shù)學(xué)高二上期末聯(lián)考試題含解析_第2頁
2023-2024學(xué)年云南省通海三中數(shù)學(xué)高二上期末聯(lián)考試題含解析_第3頁
2023-2024學(xué)年云南省通海三中數(shù)學(xué)高二上期末聯(lián)考試題含解析_第4頁
2023-2024學(xué)年云南省通海三中數(shù)學(xué)高二上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年云南省通海三中數(shù)學(xué)高二上期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知兩圓相交于兩點(diǎn),,兩圓圓心都在直線上,則值為()A. B.C. D.2.“”是“函數(shù)在上有極值”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知拋物線的焦點(diǎn)為F,且點(diǎn)F與圓上點(diǎn)的距離的最大值為6,則拋物線的準(zhǔn)線方程為()A. B.C. D.4.不等式的解集為()A. B.C. D.5.過雙曲線的右焦點(diǎn)有一條弦是左焦點(diǎn),那么的周長為()A.28 B.C. D.6.已知直線與圓交于兩點(diǎn),過分別作的垂線與軸交于兩點(diǎn),則A.2 B.3C. D.47.胡蘿卜中含有大量的胡蘿卜素,攝入人體消化器官后,可以轉(zhuǎn)化為維生素,現(xiàn)從,兩個品種的胡蘿卜所含的胡蘿卜素(單位:)得到莖葉圖如圖所示,則下列說法不正確的是A. B.的方差大于的方差C.品種的眾數(shù)為 D.品種的中位數(shù)為8.函數(shù),則的值為()A. B.C. D.9.已知點(diǎn),,,動點(diǎn)P滿足,則的取值范圍為()A. B.C. D.10.已知動直線的傾斜角的取值范圍是,則實(shí)數(shù)m的取值范圍是()A. B.C. D.11.已知拋物線的焦點(diǎn)為,直線過點(diǎn)與拋物線相交于兩點(diǎn),且,則直線的斜率為()A. B.C. D.12.橢圓離心率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)、、是三個不同的平面,、是兩條不同的直線,給出下列三個結(jié)論:①若,,則;②若,,則;③若,,則其中,正確結(jié)論的序號為__14.已知雙曲線C:的一條漸近線與直線l:平行,則雙曲線C的離心率是______15.由曲線圍成的圖形的面積為________16.已知橢圓的右頂點(diǎn)為,為上一點(diǎn),則的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點(diǎn)分別為,,且橢圓過點(diǎn),離心率,為坐標(biāo)原點(diǎn),過且不平行于坐標(biāo)軸的動直線與有兩個交點(diǎn),,線段的中點(diǎn)為.(1)求的標(biāo)準(zhǔn)方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點(diǎn),使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.18.(12分)在水平桌面上放一只內(nèi)壁光滑的玻璃水杯,已知水杯內(nèi)壁為拋物面型(拋物面指拋物線繞其對稱軸旋轉(zhuǎn)所得到的面),拋物面的軸截面是如圖所示的拋物線.現(xiàn)有一些長短不一、質(zhì)地均勻的細(xì)直金屬棒,其長度均不小于拋物線通徑的長度(通徑是過拋物線焦點(diǎn),且與拋物線的對稱軸垂直的直線被拋物線截得的弦),若將這些細(xì)直金屬棒,隨意丟入該水杯中,實(shí)驗(yàn)發(fā)現(xiàn):當(dāng)細(xì)棒重心最低時(shí),達(dá)到靜止?fàn)顟B(tài),此時(shí)細(xì)棒交匯于一點(diǎn).(1)請結(jié)合你學(xué)過的數(shù)學(xué)知識,猜想細(xì)棒交匯點(diǎn)的位置;(2)以玻璃水杯內(nèi)壁軸截面的拋物線頂點(diǎn)為原點(diǎn),建立如圖所示直角坐標(biāo)系.設(shè)玻璃水杯內(nèi)壁軸截面的拋物線方程為,將細(xì)直金屬棒視為拋物線的弦,且弦長度為,以細(xì)直金屬棒的中點(diǎn)為其重心,請從數(shù)學(xué)角度解釋上述實(shí)驗(yàn)現(xiàn)象.19.(12分)已知數(shù)列滿足,(1)設(shè),求證數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為,是否存在正整數(shù)m,使得對任意的都成立?若存在,求出m的最小值;若不存在,試說明理由20.(12分)已知函數(shù).若圖象上的點(diǎn)處的切線斜率為(1)求a,b的值;(2)的極值21.(12分)如圖,在三棱錐中,側(cè)面PBC是邊長為2的等邊三角形,M,N分別為AB,AP的中點(diǎn).過MN的平面與側(cè)面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值22.(10分)自我國爆發(fā)新冠肺炎疫情以來,各地醫(yī)療單位都加緊了醫(yī)療用品的生產(chǎn).某醫(yī)療器械廠統(tǒng)計(jì)了口罩生產(chǎn)車間每名工人的生產(chǎn)速度,并將所得數(shù)據(jù)分成五組并繪制出如圖所示的頻率分布直方圖.已知前四組的頻率成等差數(shù)列,第五組與第二組的頻率相等(1)估計(jì)口罩生產(chǎn)車間工人生產(chǎn)速度的中位數(shù)(結(jié)果寫成分?jǐn)?shù)的形式);(2)為了解該車間工人生產(chǎn)速度是否與他們的工作經(jīng)驗(yàn)有關(guān),現(xiàn)從車間所有工人中隨機(jī)抽樣調(diào)查了5名工人的生產(chǎn)速度以及他們的工齡(參加工作的年限),數(shù)據(jù)如下表:工齡x(單位:年)4681012生產(chǎn)速度y(單位:件/小時(shí))4257626267根據(jù)上述數(shù)據(jù)求每名工人的生產(chǎn)速度y關(guān)于他的工齡x的回歸方程,并據(jù)此估計(jì)該車間某位有16年工齡的工人的生產(chǎn)速度附:回歸方程中斜率和截距的最小二乘估計(jì)公式為:,

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由相交弦的性質(zhì),可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得的值,即可得的坐標(biāo),進(jìn)而可得中點(diǎn)的坐標(biāo),代入直線方程可得;進(jìn)而將、相加可得答案【詳解】根據(jù)題意,由相交弦的性質(zhì),相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點(diǎn)在這條直線上;由與直線垂直,可得,解可得,則,故中點(diǎn)為,且其在直線上,代入直線方程可得,1,可得;故;故選:A【點(diǎn)睛】方法點(diǎn)睛:解答圓和圓的位置關(guān)系時(shí),要注意利用平面幾何圓的知識來分析解答.2、B【解析】對求導(dǎo),取得函數(shù)在上有極值的等價(jià)條件,再根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可【詳解】解:,則,令,可得,當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,所以,函數(shù)在處取得極小值,若函數(shù)在上有極值,則,,因?yàn)?,但是由推不出,因此是函?shù)在上有極值的必要不充分條件故選:B3、D【解析】先求得拋物線的焦點(diǎn)坐標(biāo),再根據(jù)點(diǎn)F與圓上點(diǎn)的距離的最大值為6求解.【詳解】因?yàn)閽佄锞€的焦點(diǎn)為F,且點(diǎn)F與圓上點(diǎn)的距離的最大值為6,所以,解得,所以拋物線準(zhǔn)線方程為,故選:D4、A【解析】根據(jù)一元二次不等式的解法進(jìn)行求解即可.【詳解】,故選:A.5、C【解析】根據(jù)雙曲線方程得,,由雙曲線的定義,證出,結(jié)合即可算出△的周長【詳解】雙曲線方程為,,根據(jù)雙曲線的定義,得,,,,相加可得,,,因此△的周長,故選:C6、D【解析】由題意,圓心到直線的距離,∴,∵直線∴直線的傾斜角為,∵過分別作的垂線與軸交于兩點(diǎn),∴,故選D.7、C【解析】讀懂莖葉圖,分別計(jì)算出眾數(shù)、中位數(shù)、方差,然后對各選項(xiàng)進(jìn)行判斷【詳解】由莖葉圖知,品種所含胡蘿卜素普遍高于品種,所以,故A正確;品種的數(shù)據(jù)波動比品種的數(shù)據(jù)波動大,所以的方差大于的方差,故B正確;品種的眾數(shù)為與,故C錯誤;品種的數(shù)據(jù)的中位數(shù)為,故D正確.故選.【點(diǎn)睛】本題主要考查了對數(shù)據(jù)的分析,首先要讀懂莖葉圖,然后計(jì)算出眾數(shù)、中位數(shù)、方差,即可對各選項(xiàng)進(jìn)行判斷,較為基礎(chǔ)8、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B9、C【解析】由題設(shè)分析知的軌跡為(不與重合),要求的取值范圍,只需求出到圓上點(diǎn)的距離范圍即可.【詳解】由題設(shè),在以為直徑的圓上,令,則(不與重合),所以的取值范圍,即為到圓上點(diǎn)的距離范圍,又圓心到的距離,圓的半徑為2,所以的取值范圍為,即.故選:C10、B【解析】根據(jù)傾斜角與斜率的關(guān)系可得,即可求m的范圍.【詳解】由題設(shè)知:直線斜率范圍為,即,可得.故選:B.11、B【解析】設(shè)直線傾斜角為,由,及,可求得,當(dāng)點(diǎn)在軸上方,又,求得,利用對稱性即可得出結(jié)果.【詳解】設(shè)直線傾斜角為,由,所以,由,,所以,當(dāng)點(diǎn)在軸上方,又,所以,所以由對稱性知,直線的斜率.故選:B.12、C【解析】將方程轉(zhuǎn)化為橢圓的標(biāo)準(zhǔn)方程,求得a,c,再由離心率公式求得答案.【詳解】解:由得,所以,則,所以橢圓的離心率,故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①②【解析】利用線面垂直的性質(zhì)可判斷命題①、②的正誤;利用特例法可判斷命題③的正誤.綜合可得出結(jié)論.【詳解】、、是三個不同的平面,、是兩條不同的直線.對于①,若,,由同垂直于同一平面的兩直線平行,可得,故①正確;對于②,若,,由同垂直于同一直線的兩平面平行,可得,故②正確;對于③,若,,考慮墻角處的三個平面兩兩垂直,可判斷、相交,則不正確故答案為:①②【點(diǎn)睛】本題考查空間中線面、面面位置關(guān)系有關(guān)命題真假的判斷,考查推理能力,屬于基礎(chǔ)題.14、【解析】先用兩直線平行斜率相等求出,再利用離心率的定義求解即可.【詳解】由題意可得雙曲線C的一條漸近線方程為,則,即,則,故雙曲線C的離心率故答案為:.15、【解析】曲線圍成的圖形關(guān)于軸,軸對稱,故只需要求出第一象限的面積即可.【詳解】將或代入方程,方程不發(fā)生改變,故曲線關(guān)于關(guān)于軸,軸對稱,因此只需求出第一象限的面積即可.當(dāng),時(shí),曲線可化為:,在第一象限為弓形,其面積為,故.故答案為:.16、【解析】設(shè)出點(diǎn)P的坐標(biāo),利用兩點(diǎn)間距離公式建立函數(shù)關(guān)系,借助二次函數(shù)計(jì)算最值作答.【詳解】橢圓的右頂點(diǎn)為,設(shè)點(diǎn),則,即,且,于是得,因,則當(dāng)時(shí),,所以的最大值為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析;(3)不存在,理由見解析.【解析】(1)由橢圓所過點(diǎn)及離心率,列方程組,再求解即得;(2)設(shè)出點(diǎn)A,B坐標(biāo)并列出它們滿足的關(guān)系,利用點(diǎn)差法即可作答;(3)設(shè)直線的方程,聯(lián)立直線與橢圓的方程,借助韋達(dá)定理求得,,再結(jié)合為等邊三角形的條件即可作答.【詳解】(1)顯然,半焦距c有,即,則,所以橢圓的標(biāo)準(zhǔn)方程為;(2)設(shè),,,,由(1)知,,兩式相減得,即,而弦的中點(diǎn),則有,所以;(3)假定存在符合要求的點(diǎn)P,由(1)知,設(shè)直線的方程為,由得:,則,,于是得,從而得點(diǎn),,因?yàn)榈冗吶切危从校虼耍?,,從而得,整理得,無解,所以在y軸上不存在點(diǎn),使得為等邊三角形.18、(1)拋物線的焦點(diǎn)或拋物面的焦點(diǎn)(2)答案見解析【解析】(1)結(jié)合通徑的特點(diǎn)可猜想得到結(jié)果;(2)將問題轉(zhuǎn)化為當(dāng)時(shí),只要過點(diǎn),則中點(diǎn)到的距離最小,根據(jù),結(jié)合拋物線定義可得結(jié)論.【小問1詳解】根據(jù)通徑的特征,知通徑會經(jīng)過拋物線的焦點(diǎn)達(dá)到靜止?fàn)顟B(tài),則可猜想細(xì)棒交匯點(diǎn)位置為:拋物線焦點(diǎn)或拋物面的焦點(diǎn).【小問2詳解】解釋上述現(xiàn)象,即證:當(dāng)(為拋物線通徑)時(shí),只要過點(diǎn),則中點(diǎn)到的距離最??;如圖所示,記點(diǎn)在拋物線準(zhǔn)線上的射影分別是,,由拋物線定義知:,當(dāng)過拋物線焦點(diǎn)時(shí),點(diǎn)到準(zhǔn)線距離取得最小值,最小值為的一半,此時(shí)點(diǎn)到軸距離最小.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查拋物線的實(shí)際應(yīng)用問題,解題關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為拋物線焦點(diǎn)弦的中點(diǎn)到軸距離最小問題的證明,通過拋物線的定義可證得結(jié)論.19、(1);(2)存在,3【解析】(1)結(jié)合遞推關(guān)系可證得bn+1-bn1,且b1=1,可證數(shù)列{bn}為等差數(shù)列,據(jù)此可得數(shù)列的通項(xiàng)公式;(2)結(jié)合通項(xiàng)公式裂項(xiàng)有求和有,再結(jié)合條件可得,即求【詳解】(1)證明:∵,又由a1=2,得b1=1,所以數(shù)列{bn}是首項(xiàng)為1,公差為1的等差數(shù)列,所以bn=1+(n-1)×1=n,由,得(2)解:∵,,所以,依題意,要使對于n∈N*恒成立,只需,解得m≥3或m≤-4又m>0,所以m≥3,所以正整數(shù)m的最小值為320、(1)(2)極大值為,極小值為【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)圖象上的點(diǎn)處的切線斜率為,列出方程組,解之即可得解;(2)求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的符號求得函數(shù)的單調(diào)區(qū)間,再根據(jù)極值的定義即可得解.【小問1詳解】解:,,;【小問2詳解】解:由(1)得,令,得或,,-1(-1,3)3+0-0+的極大值為,極小值為.21、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質(zhì)定理可證明.(2)由平面平面ABC,取BC中點(diǎn)O,則平面ABC,可得,由條件可得,以O(shè)坐標(biāo)原點(diǎn),分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求解即可.【小問1詳解】因?yàn)镸,N分別為AB,AP的中點(diǎn),所以,又平面PBC,所以平面PBC,因?yàn)槠矫嫫矫妫浴拘?詳解】因?yàn)槠矫嫫矫鍭BC,取BC中點(diǎn)O,連接PO,AO,因?yàn)槭堑冗吶切危?,所以平面ABC,故,又因,所以,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)B,AO,OP為x,y,z軸建立空間直角坐標(biāo)系,可得:,,,,,所以,,,設(shè)平面PA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論