版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024屆湖南省岳陽市達標名校高二上數(shù)學期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶?;顒訕俗R(如圖1).其中“100”的兩個“0”設計為兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切(如圖2).已知,則由其中一個圓心向另一個小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.2.若直線與曲線有公共點,則b的取值范圍是()A. B.C. D.3.已知直線:和直線:,拋物線上一動點P到直線和直線的距離之和的最小值是()A. B.C. D.4.設等比數(shù)列的前項和為,若,則的值是()A. B.C. D.45.點F是拋物線的焦點,點,P為拋物線上一點,P不在直線AF上,則△PAF的周長的最小值是()A.4 B.6C. D.6.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.7.過原點O作兩條相互垂直的直線分別與橢圓交于A、C與B、D,則四邊形ABCD面積最小值為()A B.C. D.8.北京大興國際機場的顯著特點之一是各種彎曲空間的運用,在數(shù)學上用曲率刻畫空間彎曲性.規(guī)定:多面體的頂點的曲率等于與多面體在該點的面角之和的差(多面體的面的內(nèi)角叫做多面體的面角,角度用弧度制),多面體面上非頂點的曲率均為零,多面體的總曲率等于該多面體各頂點的曲率之和.例如:正四面體在每個頂點有個面角,每個面角是,所以正四面體在每個頂點的曲率為,故其總曲率為.給出下列三個結(jié)論:①正方體在每個頂點的曲率均為;②任意四棱錐總曲率均為;③若某類多面體的頂點數(shù),棱數(shù),面數(shù)滿足,則該類多面體的總曲率是常數(shù).其中,所有正確結(jié)論的序號是()A.①② B.①③C.②③ D.①②③9.已知命題是真命題,那么的取值范圍是()A. B.C. D.10.已知圓與圓,則兩圓的位置關(guān)系是()A.外切 B.內(nèi)切C.相交 D.相離11.在中,內(nèi)角的對邊分別為,若,則角為A. B.C. D.12.總體有編號為01,02,…,19,20的20個個體組成,利用下面的隨機數(shù)表選取3個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第3個個體的編號為()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.14二、填空題:本題共4小題,每小題5分,共20分。13.已知圓的圓心與點關(guān)于直線對稱,直線與圓相交于、兩點,且,則圓的方程為_________14.在梯形中,,,.將梯形繞所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的體積為______.15.已知點為雙曲線的左焦點,過原點的直線l與雙曲線C相交于P,Q兩點.若,則______16.過點與直線平行的直線的方程是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線的左,右焦點為,離心率為.(1)求雙曲線C的漸近線方程;(2)過作斜率為k的直線l分別交雙曲線的兩條漸近線于A,B兩點,若,求k的值.18.(12分)已知拋物線的準線方程是.(Ⅰ)求拋物線的方程;(Ⅱ)設直線與拋物線相交于,兩點,為坐標原點,證明:.19.(12分)在對某老舊小區(qū)污水分流改造時,需要給該小區(qū)重新建造一座底面為矩形且容積為324立方米的三級污水處理池(平面圖如圖所示).已知池的深度為2米,如果池四周圍墻的建造單價為400元/平方米,中間兩道隔墻的建造單價為248元/平方米,池底的建造單價為80元/平方米,池蓋的建造單價為100元/平方米,建造此污水處理池相關(guān)人員的勞務費以及其他費用是9000元.(水池所有墻的厚度以及池底池蓋的厚度按相關(guān)規(guī)定執(zhí)行,計算時忽略不計)(1)現(xiàn)有財政撥款9萬元,如果將污水處理池的寬建成9米,那么9萬元的撥款是否夠用?(2)能否通過合理的設計污水處理池的長和寬,使總費用最低?最低費用為多少萬元?20.(12分)已知數(shù)列是等差數(shù)列,(1)求的通項公式;(2)求的最大項21.(12分)已知橢圓C:的長軸長為4,過C的一個焦點且與x軸垂直的直線被C截得的線段長為3(1)求C的方程;(2)若直線:與C交于A,B兩點,線段AB的中垂線與C交于P,Q兩點,且,求m的值22.(10分)某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù))(1)A類工人中和B類工人各抽查多少工人?(2)從A類工人中抽查結(jié)果和從B類工人中的抽查結(jié)果分別如下表1和表2:表1:生產(chǎn)能力分組人數(shù)48x53表2:生產(chǎn)能力分組人數(shù)6y3618①先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結(jié)論)②分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人和生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)圖1A類工人生產(chǎn)能力的頻率分布直方圖圖2B類工人生產(chǎn)能力的頻率分布直方圖
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】作出圖形,進而根據(jù)勾股定理并結(jié)合圓與圓的位置關(guān)系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.2、D【解析】將本題轉(zhuǎn)化為直線與半圓的交點問題,數(shù)形結(jié)合,求出的取值范圍【詳解】將曲線的方程化簡為即表示以為圓心,以2為半徑的一個半圓,如圖所示:當直線經(jīng)過時最大,即,當直線與下半圓相切時最小,由圓心到直線距離等于半徑2,可得:解得(舍去),或結(jié)合圖象可得故選:D.3、A【解析】根據(jù)已知條件,結(jié)合拋物線的定義,可得點P到直線和直線的距離之和,當B,P,F(xiàn)三點共線時,最小,再結(jié)合點到直線的距離公式,即可求解【詳解】∵拋物線,∴拋物線的準線為,焦點為,∴點P到準線的距離PA等于點P到焦點F的距離PF,即,∴點P到直線和直線的距離之和,∴當B,P,F(xiàn)三點共線時,最小,∵,∴,∴點P到直線和直線的距離之和的最小值為故選:A4、B【解析】根據(jù)題意,由等比數(shù)列的性質(zhì)可知成等比數(shù)列,從而可得,即可求出的結(jié)果.【詳解】解:已知等比數(shù)列的前項和為,,由等比數(shù)列的性質(zhì)得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.5、C【解析】由拋物線的定義轉(zhuǎn)化后求距離最值【詳解】拋物線的焦點,準線為過點作準線于點,故△PAF的周長為,,可知當三點共線時周長最小,為故選:C6、D【解析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結(jié)果.【詳解】.故選:D7、A【解析】直線AC、BD與坐標軸重合時求出四邊形面積,與坐標軸不重合求出四邊形ABCD面積最小值,再比較大小即可作答.【詳解】因四邊形ABCD的兩條對角線互相垂直,由橢圓性質(zhì)知,四邊形ABCD的四個頂點為橢圓頂點時,而,四邊形ABCD的面積,當直線AC斜率存在且不0時,設其方程為,由消去y得:,設,則,,直線BD方程為,同理得:,則有,當且僅當,即或時取“=”,而,所以四邊形ABCD面積最小值為.故選:A8、D【解析】根據(jù)曲率的定義依次判斷即可.【詳解】①根據(jù)曲率的定義可得正方體在每個頂點的曲率為,故①正確;②由定義可得多面體的總曲率頂點數(shù)各面內(nèi)角和,因為四棱錐有5個頂點,5個面,分別為4個三角形和1個四邊形,所以任意四棱錐的總曲率為,故②正確;③設每個面記為邊形,則所有的面角和為,根據(jù)定義可得該類多面體的總曲率為常數(shù),故③正確.故選:D.9、C【解析】依據(jù)題意列出關(guān)于的不等式,即可求得的取值范圍.【詳解】當時,僅當時成立,不符合題意;當時,若成立,則,解之得綜上,取值范圍是故選:C10、A【解析】求得兩圓的圓心和半徑,再根據(jù)圓心距與半徑之和半徑之差的關(guān)系,即可判斷位置關(guān)系.【詳解】對圓,其圓心,半徑;對圓,其圓心,半徑;又,故兩圓外切.故選:A.11、A【解析】因為,那么結(jié)合,所以cosA==,所以A=,故答案為A考點:正弦定理與余弦定理點評:本題主要考查正弦定理與余弦定理的基本應用,屬于中等題.12、D【解析】由隨機數(shù)表法抽樣原理即可求出答案.【詳解】根據(jù)題意,依次讀出的數(shù)據(jù)為65(舍去),72(舍去),08,02,63(舍去),14,即第三個個體編號為14.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用對稱條件求出圓心C的坐標,借助直線被圓所截弦長求出圓半徑即可寫出圓的方程.【詳解】設圓的圓心,依題意,,解得,即圓心,點C到直線的距離,因圓截直線所得弦AB長為6,于是得圓C的半徑所以圓的方程為:.故答案為:14、##【解析】畫出幾何體的直觀圖,利用已知條件,求解幾何體的體積即可【詳解】梯形ABCD:由題意可知空間幾何體的直觀圖如圖:旋轉(zhuǎn)體是底面半徑為1,高為2的圓柱,挖去一個相同底面高為1的圓錐,幾何體的體積為:故答案為:15、7【解析】先證明四邊形是平行四邊形,再根據(jù)雙曲線的定義可求解.【詳解】由雙曲線的對稱性,可知,又,所以四邊形是平行四邊形,所以,由,可知點在雙曲線的左支,如下圖所示:由雙曲線定義有,又,所以.故答案為:16、【解析】根據(jù)給定條件設出所求直線方程,利用待定系數(shù)法求解即得.【詳解】設與直線平行的直線的方程為,而點在直線上,于是得,解得,所以所求的直線的方程為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由離心率可得雙曲線的漸近線方程;(2)設,則的中點為,由,可得,然后的方程與雙曲線的漸近線方程聯(lián)立,利用韋達定理可得答案.【小問1詳解】設,則,又,所以,得,所以雙曲線的漸近線方程為.【小問2詳解】由已知直線的傾斜角不是直角,,設,則的中點為,,由,可知,所以,即,因為的方程為,雙曲線的漸近線方程可寫為,由消去y,得,所以,,所以,因為,所以,即.18、(Ⅰ)(Ⅱ)詳見解析【解析】(Ⅰ)利用排趨性的準線方程求出p,即可求解拋物線的方程;(Ⅱ)直線y=k(x-2)(k≠0)與拋物線聯(lián)立,通過韋達定理求解直線的斜率關(guān)系即可證明OM⊥ON試題解析:(Ⅰ)解:因為拋物線的準線方程為,所以,解得,所以拋物線的方程為.(Ⅱ)證明:設,.將代入,消去整理得.所以.由,,兩式相乘,得,注意到,異號,所以.所以直線與直線的斜率之積為,即.考點:直線與拋物線的位置關(guān)系;拋物線的標準方程19、(1)不夠;(2)將污水處理池建成長為16.2米,寬為10米時,建造總費用最低,最低費用為90000元.【解析】(1)根據(jù)題意結(jié)合單價直接計算即可得出;(2)設污水處理池的寬為米,表示出總費用,利用基本不等式可求.【小問1詳解】如果將污水處理池的寬建成9米,則長為(米),建造總費用為:(元)因為,所以如果污水處理池的寬建成9米,那么9萬元的撥款是不夠用的.【小問2詳解】設污水處理池的寬為米,建造總費用為元,則污水處理池的長為米.則因為,等號僅當,即時成立,所以時建造總費用取最小值90000,所以將污水處理池建成長為16.2米,寬為10米時,建造總費用最低,最低費用為90000元.20、(1);(2).【解析】(1)利用等差數(shù)列的通項公式進行求解即可;(2)運用二次函數(shù)的性質(zhì)進行求解即可.【小問1詳解】設等差數(shù)列的公差為,所以有,所以;【小問2詳解】由(1)可知:,當時,有最大項,最大項為:.21、(1);(2).【解析】(1)由題設可得且,求出,即可得橢圓方程.(2)聯(lián)立直線l和橢圓C并整理為關(guān)于x的一元二次方程,由求出m的范圍,再應用韋達定理、弦長公式求,進而可得線段AB的中垂線,同理聯(lián)立曲線C求相交弦長,再由已知條件求m值,注意其范圍.【小問1詳解】由題意知,,則,令,可得,由題設有,則,所以C的方程為【小問2詳解】聯(lián)立方程得:,由,得設,,則,,所以,另一方面,,即線段AB的中點為,所以線段AB的中垂線方程為令,聯(lián)立方程得:同理求法,可得:,即因此,解得,故22、(1)25,75(2)①5,15,直方圖見解析,B類②123,133.8,131.1【解析】(1)先計算抽樣比為,進而可得各層抽取人數(shù)(2)①類、類工人人數(shù)之比為,按此比例確定兩類工人需抽取的人
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《基因突變和基因重組》教學設計1
- 課題申報參考:競合供應鏈企業(yè)社會責任審計、運營與融資策略研究
- 課題申報參考:檢察公益訴訟立法研究
- 2025年上半年水產(chǎn)漁業(yè)生產(chǎn)情況總結(jié)及下半年工作安排(三篇)
- 二零二五版房地產(chǎn)土地使用權(quán)交易爭議解決協(xié)議3篇
- 影視劇臨時演員聘用協(xié)議2025版2篇
- 2025年度個人與派遣公司教育培訓派遣合同范本4篇
- 二零二五年鍋爐維修安全風險評估與處理協(xié)議3篇
- 二零二五版新材料產(chǎn)業(yè)臨時用工聘用管理協(xié)議3篇
- 2025年香港公司股權(quán)轉(zhuǎn)讓手續(xù)糾紛解決合同3篇
- 慈溪高一期末數(shù)學試卷
- 天津市武清區(qū)2024-2025學年八年級(上)期末物理試卷(含解析)
- 《徐霞客傳正版》課件
- 江西硅博化工有限公司年產(chǎn)5000噸硅樹脂項目環(huán)境影響評價
- 高端民用航空復材智能制造交付中心項目環(huán)評資料環(huán)境影響
- 量子醫(yī)學成像學行業(yè)研究報告
- DB22T 3268-2021 糧食收儲企業(yè)安全生產(chǎn)標準化評定規(guī)范
- 辦事居間協(xié)議合同范例
- 正念減壓療法詳解課件
- 學校校本課程《英文電影鑒賞》文本
- 華為HCSA-Presales-IT售前認證備考試題及答案
評論
0/150
提交評論