版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆陜西省渭濱中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)的圖象如圖所示,則不等式的解集為()A. B.C. D.2.從某個(gè)角度觀察籃球(如圖1),可以得到一個(gè)對(duì)稱的平面圖形,如圖2所示,籃球的外輪形為圓O,將籃球表面的粘合線看成坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長八等分,AB=BC=CD,則該雙曲線的離心率為()A. B.C. D.3.某中學(xué)高一年級(jí)有200名學(xué)生,高二年級(jí)有260名學(xué)生,高三年級(jí)有340名學(xué)生,為了了解該校高中學(xué)生完成作業(yè)情況,現(xiàn)用分層抽樣的方法抽取一個(gè)容量為40的樣本,則高二年級(jí)抽取的人數(shù)為()A.10 B.13C.17 D.264.已知直線與直線,若,則()A.6 B.C.2 D.5.已知直線的方程為,則該直線的傾斜角為()A. B.C. D.6.過雙曲線的右焦點(diǎn)有一條弦是左焦點(diǎn),那么的周長為()A.28 B.C. D.7.拋物線的焦點(diǎn)坐標(biāo)是()A.(0,-1) B.(-1,0)C. D.8.五行學(xué)說是中華民族創(chuàng)造的哲學(xué)思想.古代先民認(rèn)為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關(guān)系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關(guān)系的概率是()A. B.C. D.9.已知直線l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1平行于l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件10.已知直線與直線垂直,則實(shí)數(shù)()A.10 B.C.5 D.11.已知不等式只有一個(gè)整數(shù)解,則m的取值范圍是()A. B.C. D.12.三棱錐A-BCD中,E,F(xiàn),H分別為邊CD,AD,BC的中點(diǎn),BE,DH的交點(diǎn)為G,則的化簡結(jié)果為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知正方形邊長為,長方形中,,平面與平面互相垂直,是線段的中點(diǎn),則異面直線與所成角的余弦值為______14.已知函數(shù)是上的奇函數(shù),,對(duì),成立,則的解集為_________15.設(shè)函數(shù)的導(dǎo)函數(shù)為,已知函數(shù),則______.16.已知數(shù)列中,,且數(shù)列為等差數(shù)列,則_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求的單調(diào)遞減區(qū)間;(2)在銳角中,,,分別為角,,的對(duì)邊,且滿足,求的取值范圍.18.(12分)已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別是的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn)(1)求雙曲線的方程;(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn)和,且(其中為原點(diǎn)),求的取值范圍19.(12分)已知拋物線上的點(diǎn)M(5,m)到焦點(diǎn)F的距離為6.(1)求拋物線C的方程;(2)過點(diǎn)作直線l交拋物線C于A,B兩點(diǎn),且點(diǎn)P是線段AB的中點(diǎn),求直線l方程.20.(12分)設(shè)數(shù)列滿足,數(shù)列的前項(xiàng)和為,且(1)求證:數(shù)列為等差數(shù)列,并求的通項(xiàng)公式;(2)設(shè),若對(duì)任意正整數(shù),當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.(Ⅰ)求數(shù)列{an}的通項(xiàng);(Ⅱ)求數(shù)列的前n項(xiàng)和Sn.22.(10分)同時(shí)擲兩顆質(zhì)地均勻的骰子(六個(gè)面分別標(biāo)有數(shù)字1,2,3,4,5,6的正方體)(1)求兩顆骰子向上的點(diǎn)數(shù)相等的概率;(2)求兩顆骰子向上的點(diǎn)數(shù)不相等,且一個(gè)點(diǎn)數(shù)是另一個(gè)點(diǎn)數(shù)的整數(shù)倍的概率
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】原不等式等價(jià)于,根據(jù)的圖象判斷函數(shù)的單調(diào)性,可得和的解集,再分情況或解不等式即可求解.【詳解】由函數(shù)的圖象可知:在和上單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時(shí),;當(dāng)時(shí),;由可得,所以或,即或,解得:或,所以原不等式的解集為:,故選:D.2、D【解析】設(shè)出雙曲線方程,通過做標(biāo)準(zhǔn)品和雙曲線與圓O的交點(diǎn)將圓的周長八等分,且AB=BC=CD,推出點(diǎn)在雙曲線上,然后求出離心率即可.【詳解】設(shè)雙曲線的方程為,則,因?yàn)锳B=BC=CD,所以,所以,因?yàn)樽鴺?biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長八等分,所以在雙曲線上,代入可得,解得,所以雙曲線的離心率為.故選:D3、B【解析】計(jì)算出抽樣比可得答案.【詳解】該校高中學(xué)生共有名,所以高二年級(jí)抽取的人數(shù)名.故選:B.4、A【解析】根據(jù)兩直線垂直的充要條件得到方程,解得即可;【詳解】解:因?yàn)橹本€與直線,且,所以,解得;故選:A5、C【解析】設(shè)直線的傾斜角為,則,解方程即可.【詳解】由已知,設(shè)直線的傾斜角為,則,又,所以.故選:C6、C【解析】根據(jù)雙曲線方程得,,由雙曲線的定義,證出,結(jié)合即可算出△的周長【詳解】雙曲線方程為,,根據(jù)雙曲線的定義,得,,,,相加可得,,,因此△的周長,故選:C7、C【解析】根據(jù)拋物線標(biāo)準(zhǔn)方程,可得p的值,進(jìn)而求出焦點(diǎn)坐標(biāo).【詳解】由拋物線可知其開口向下,,所以焦點(diǎn)坐標(biāo)為,故選:C.8、C【解析】先計(jì)算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計(jì)算其中兩種元素恰是相生關(guān)系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個(gè)基本事件,其中兩種元素恰是相生關(guān)系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個(gè)基本事件,所以所求概率.故選:C9、C【解析】利用兩直線平行的等價(jià)條件求得m,再結(jié)合充分必要條件進(jìn)行判斷即可.【詳解】由直線l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,經(jīng)驗(yàn)證,當(dāng)m=-1時(shí),直線l1與l2重合,舍去,所以“m=2”是“l(fā)1平行于l2”的充要條件,故選C.【點(diǎn)睛】本題考查兩直線平行的條件,準(zhǔn)確計(jì)算是關(guān)鍵,注意充分必要條件的判斷是基礎(chǔ)題10、B【解析】根據(jù)兩直線垂直,列出方程,即可求解.【詳解】由題意,直線與直線垂直,可得,解得.故選:B.11、B【解析】依據(jù)導(dǎo)函數(shù)得到函數(shù)的單調(diào)性,數(shù)形結(jié)合去求解即可解決.【詳解】不等式只有一個(gè)整數(shù)解,可化為只有一個(gè)整數(shù)解令,則當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減,則當(dāng)時(shí),取最大值,當(dāng)時(shí),恒成立,的草圖如下:,,則若只有一個(gè)整數(shù)解,則,即故不等式只有一個(gè)整數(shù)解,則m的取值范圍是故選:B12、D【解析】依題意可得為的重心,由三角形重心的性質(zhì)可知,由中位線定理可知,再利用向量的加法運(yùn)算法則即可求出結(jié)果【詳解】解:依題意可得為的重心,,,分別為邊,和的中點(diǎn),,,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立如圖所示的空間直角坐標(biāo)系,求出,后可求異面直線所成角的余弦值.【詳解】長方形可得,因?yàn)槠矫媾c平面互相垂直,平面平面,平面,故平面,故可建立如圖所示的空間直角坐標(biāo)系,則,故,,故.故答案為:14、【解析】根據(jù)題意可以設(shè),求其導(dǎo)數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進(jìn)而可知在上的單調(diào)性,由可知的零點(diǎn),最后分類討論即可.【詳解】設(shè),則對(duì),,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;若,則;若,則或,解得或或;則的解集為.故答案為:.15、【解析】首先求出函數(shù)的導(dǎo)函數(shù),再令代入計(jì)算可得;【詳解】解:因?yàn)?,所以,所以,解得;故答案為?6、【解析】由題意得:考點(diǎn):等差數(shù)列通項(xiàng)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)降冪公式化簡的解析式,再用整體代入法即可求出函數(shù)的單調(diào)遞減區(qū)間;(2)由正弦定理邊化角,從而可求得,根據(jù)銳角三角形可得從而可求出答案【詳解】解:(1),由得所以的單調(diào)遞減區(qū)間為;(2)由正弦定理得,∵∴,即,,得,或,解得,或(舍),∵為銳角三角形,∴解得∴∴的取值范圍為【點(diǎn)睛】本題主要考查三角函數(shù)的化簡與性質(zhì),考查正弦定理的作用,屬于基礎(chǔ)題18、(1);(2)【解析】(1)求出橢圓的焦點(diǎn)和頂點(diǎn),即得雙曲線的頂點(diǎn)和焦點(diǎn),從而易求得標(biāo)準(zhǔn)方程;(2)將代入,得由直線與雙曲線交于不同的兩點(diǎn),得的取值范圍,設(shè),由韋達(dá)定理得則代入可求得的范圍【詳解】(1)設(shè)雙曲線的方程為,則,再由,得故的方程為(2)將代入,得由直線與雙曲線交于不同的兩點(diǎn),得①設(shè)則又,得,,即,解得②由①②得<k2<1,故的取值范圍【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程,考查直線與雙曲線相交中的范圍問題.應(yīng)注意:(1)利用圓錐曲線的幾何性質(zhì)或判別式構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍(2)利用已知參數(shù)的范圍,求新參數(shù)的范圍,解這類問題的核心是建立兩個(gè)參數(shù)之間的等量關(guān)系(3)利用隱含的不等關(guān)系建立不等式,從而求出參數(shù)的取值范圍(4)利用已知的不等關(guān)系構(gòu)造不等式,從而求出參數(shù)的取值范圍(5)利用求函數(shù)的值域的方法將待求量表示為其他變量的函數(shù),求其值域,從而確定參數(shù)的取值范圍19、(1)(2)【解析】(1)由拋物線定義有求參數(shù),即可寫出拋物線方程.(2)由題意設(shè),聯(lián)立拋物線方程,結(jié)合韋達(dá)定理、中點(diǎn)坐標(biāo)求參數(shù)k,即可得直線l方程【小問1詳解】由題設(shè),拋物線準(zhǔn)線方程為,∴拋物線定義知:可得,故【小問2詳解】由題設(shè),直線l的斜率存在且不為0,設(shè)聯(lián)立方程,得,整理得,則.又P是線段AB的中點(diǎn),∴,即故l20、(1)證明見解析,;(2)或.【解析】(1)結(jié)合與關(guān)系用即可證明為常數(shù);求出通項(xiàng)公式后利用累加法即可求的通項(xiàng)公式;(2)裂項(xiàng)相消求,判斷單調(diào)性求其最大值即可.【小問1詳解】當(dāng)時(shí),得到,∴,當(dāng)時(shí),是以4為首項(xiàng),2為公差的等差數(shù)列∴當(dāng)時(shí),當(dāng)時(shí),也滿足上式,.【小問2詳解】令,當(dāng),因此的最小值為,的最大值為對(duì)任意正整數(shù),當(dāng)時(shí),恒成立,得,即在時(shí)恒成立,,解得t<0或t>3.21、(Ⅰ)(Ⅱ)【解析】本試題考查了等差數(shù)列與等比數(shù)列的概念以及等比數(shù)列的前n項(xiàng)和公式等基本知識(shí)(Ⅰ)由題設(shè)知公差由成等比數(shù)列得解得(舍去),故的通項(xiàng)(Ⅱ)由(Ⅰ)知,由等比數(shù)列前n項(xiàng)和公式得點(diǎn)評(píng):本試題題目條件給的比較清晰,直接.只要抓住概念就可以很好的解決22、(1);(2).【解析】(1)求出同時(shí)擲兩顆骰子的基本事件數(shù)、及骰子向上的點(diǎn)數(shù)相等的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公共建筑節(jié)能施工方案研究
- 高校食堂衛(wèi)生管理方案
- 食品配送行業(yè)售后服務(wù)標(biāo)準(zhǔn)方案
- 平頂山2024年03版小學(xué)三年級(jí)下冊英語第一單元測驗(yàn)卷
- 商品包裝設(shè)計(jì)的視覺效應(yīng)探析
- 屋面瓦更換施工合同(2篇)
- 學(xué)校校園馬拉松活動(dòng)方案
- IT服務(wù)合同解約協(xié)議
- 倉儲(chǔ)物流易燃物品安全管理制度
- 牡丹江-PEP-2024年小學(xué)6年級(jí)英語第2單元期中試卷
- 學(xué)禮以立大國范 知到智慧樹網(wǎng)課答案
- 生物信息學(xué)(上海海洋大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年上海海洋大學(xué)
- 大國工匠徐立平
- 《工程建設(shè)標(biāo)準(zhǔn)強(qiáng)制性條文電力工程部分2023版》
- 下丘腦疾病課件
- 慢阻肺患者隨訪記錄表(參考樣表)
- 中國農(nóng)業(yè)文化遺產(chǎn)與生態(tài)智慧智慧樹知到期末考試答案章節(jié)答案2024年浙江農(nóng)林大學(xué)
- 2024年招錄考試-大學(xué)畢業(yè)生士兵提干筆試參考題庫含答案
- 超聲醫(yī)學(xué)科-提高超聲醫(yī)學(xué)科危急值上報(bào)率PDCA
- 計(jì)算機(jī)操作員(五級(jí))理論考試題庫(濃縮300題)
- 化驗(yàn)室崗位培訓(xùn)
評(píng)論
0/150
提交評(píng)論