版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省黃山市徽州一中2023年數(shù)學(xué)高二上期末檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)O為坐標(biāo)原點(diǎn),拋物線C:的焦點(diǎn)為F,點(diǎn)T在拋物線C的準(zhǔn)線上,線段FT與拋物線C的交點(diǎn)為W,,則()A.1 B.C. D.2.若、且,則下列式子一定成立的是()A. B.C. D.3.雙曲線:的一條漸近線與直線垂直,則它的離心率為()A. B.C. D.4.已知“”的必要不充分條件是“或”,則實(shí)數(shù)的最小值為()A. B.C. D.5.箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,設(shè)事件=“至少有一件次品”,則的對(duì)立事件為()A.至多兩件次品 B.至多一件次品C.沒有次品 D.至少一件次品6.如圖,四面體-,是底面△的重心,,則()A B.C. D.7.設(shè)函數(shù)在上單調(diào)遞減,則實(shí)數(shù)的取值范圍是()A. B.C. D.8.若雙曲線的一個(gè)焦點(diǎn)為,則的值為()A. B.C.1 D.9.若“”是“”的充分不必要條件,則實(shí)數(shù)a的取值范圍為A. B.或C. D.10.在中,角,,所對(duì)的邊分別為,,,若,,,則A. B.2C.3 D.11.在中,,滿足條件的三角形的個(gè)數(shù)為()A.0 B.1C.2 D.無數(shù)多12.方程表示橢圓的充分不必要條件可以是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線:,,是其左右焦點(diǎn).圓:,點(diǎn)為雙曲線右支上的動(dòng)點(diǎn),點(diǎn)為圓上的動(dòng)點(diǎn),則的最小值是________.14.與直線平行,且距離為的直線方程為______15.設(shè)為三角形的一個(gè)內(nèi)角,已知曲線:,則可能是___________.(寫出不同曲線的名稱,盡可能多.注:在一些問題情景中,直線可以理解成是特殊的曲線)16.已知函數(shù),設(shè),且函數(shù)有3個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是公差不為零的等差數(shù)列,,且,,成等比數(shù)列(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和18.(12分)已知函數(shù)R)(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;(2)求的單調(diào)區(qū)間19.(12分)數(shù)字人民幣是由央行發(fā)行的法定數(shù)字貨幣,它由指定運(yùn)營機(jī)構(gòu)參與運(yùn)營并向公眾兌換,與紙鈔和硬幣等價(jià).截至2021年6月30日,數(shù)字人民幣試點(diǎn)場景已超132萬個(gè),覆蓋生活繳費(fèi)、餐飲服務(wù)、交通出行、購物消費(fèi)、政務(wù)服務(wù)等領(lǐng)域.為了進(jìn)一步了解普通大眾對(duì)數(shù)字人民幣的感知以及接受情況,某機(jī)構(gòu)進(jìn)行了一次問卷調(diào)查,結(jié)果如下:學(xué)歷小學(xué)及以下初中高中大學(xué)??拼髮W(xué)本科碩士研究生及以上不了解數(shù)字人民幣35358055646了解數(shù)字人民幣406015011014025(1)如果將高中及高中以下的學(xué)歷稱為“低學(xué)歷”,大學(xué)??萍耙陨蠈W(xué)歷稱為“高學(xué)歷”,根據(jù)所給數(shù)據(jù),完成列聯(lián)表.低學(xué)歷高學(xué)歷合計(jì)不了解數(shù)字人民幣了解數(shù)字人民幣合計(jì)(2)若從低學(xué)歷的被調(diào)查者中隨機(jī)抽取2人進(jìn)行進(jìn)一步調(diào)查,求被選中的2人中至少有1人對(duì)數(shù)字人民幣不了解的概率:(3)根據(jù)列聯(lián)表,判斷是否有的把握認(rèn)為“是否了解數(shù)字人民幣”與“學(xué)歷高低”有關(guān)?0.0500.0100.001k3.8416.63510.828附:.20.(12分)已知圓C:,圓C與x軸交于A,B兩點(diǎn)(1)求直線y=x被圓C所截得的弦長;(2)圓M過點(diǎn)A,B,且圓心在直線y=x+1上,求圓M的方程21.(12分)已知是等差數(shù)列,是各項(xiàng)都為正數(shù)的等比數(shù)列,,再從①;②;③這三個(gè)條件中選擇___________,___________兩個(gè)作為已知.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.22.(10分)已知等差數(shù)列的前項(xiàng)和為,且,(1)求數(shù)列的通項(xiàng)公式;(2)若數(shù)列滿足,求數(shù)列的前項(xiàng)和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)平面向量共線的性質(zhì),結(jié)合拋物線的定義進(jìn)行求解即可.【詳解】由已知得:,該拋物線的準(zhǔn)線方程為:,所以設(shè),因?yàn)?,所以,由拋物線的定義可知:,故選:B2、B【解析】構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷AB選項(xiàng);構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷CD選項(xiàng).【詳解】對(duì)于AB選項(xiàng),構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,因?yàn)椤⑶?,則,即,A錯(cuò)B對(duì);對(duì)于CD選項(xiàng),構(gòu)造函數(shù),其中,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,故函數(shù)在上不單調(diào),無法確定與的大小關(guān)系,故CD都錯(cuò).故選:B.3、A【解析】先利用直線的斜率判定一條漸近線與直線垂直,求出,再利用雙曲線的離心率公式和進(jìn)行求解.【詳解】因?yàn)橹本€的斜率為,所以雙曲線的一條漸近線與直線垂直,所以,即,則雙曲線的離心率.故選:A.卷II(非選擇題4、A【解析】首先解不等式得到或,根據(jù)題意得到,再解不等式組即可.【詳解】,解得或,因?yàn)椤啊钡谋匾怀浞謼l件是“或”,所以.實(shí)數(shù)的最小值為.故選:A5、C【解析】利用對(duì)立事件的定義,分析即得解【詳解】箱子中有5件產(chǎn)品,其中有2件次品,從中隨機(jī)抽取2件產(chǎn)品,可能出現(xiàn):“兩件次品”,“一件次品,一件正品”,“兩件正品”三種情況根據(jù)對(duì)立事件的定義,事件=“至少有一件次品”其對(duì)立事件為:“兩件正品”,即”沒有次品“故選:C6、B【解析】根據(jù)空間向量的加減運(yùn)算推出,進(jìn)而得出結(jié)果.【詳解】因?yàn)?,所以,故選:B7、B【解析】分析可知,對(duì)任意的恒成立,由參變量分離法可得出,求出在時(shí)的取值范圍,即可得出實(shí)數(shù)的取值范圍.【詳解】因?yàn)?,則,由題意可知對(duì)任意的恒成立,則對(duì)任意的恒成立,當(dāng)時(shí),,.故選:B.8、B【解析】由題意可知雙曲線的焦點(diǎn)在軸,從而可得,再列方程可求得結(jié)果【詳解】因?yàn)殡p曲線的一個(gè)焦點(diǎn)為,所以,,所以,解得,故選:B9、D【解析】“”是“”的充分不必要條件,結(jié)合集合的包含關(guān)系,即可求出的取值范圍.【詳解】∵“”是“”的充分不必要條件∴或∴故選:D.【點(diǎn)睛】本題考查充分必要條件,根據(jù)充要條件求解參數(shù)的范圍時(shí),可把充分條件、必要條件或充要條件轉(zhuǎn)化為集合間的關(guān)系,由此得到不等式(組)后再求范圍.解題時(shí)要注意,在利用兩個(gè)集合之間的關(guān)系求解參數(shù)的取值范圍時(shí),不等式是否能夠取等號(hào)決定端點(diǎn)值的取舍,處理不當(dāng)容易出現(xiàn)漏解或增解的現(xiàn)象.10、A【解析】利用正弦定理,可直接求出的值.【詳解】在中,由正弦定理得,所以,故選A.【點(diǎn)睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計(jì)算能力,屬于基礎(chǔ)題11、B【解析】利用正弦定理得到,進(jìn)而或,由,得,即可求解【詳解】由正弦定理得,,或,,,故滿足條件的有且只有一個(gè).故選:B12、D【解析】由“方程表示橢圓”可求得實(shí)數(shù)的取值范圍,結(jié)合充分不必要條件的定義可得出結(jié)論.【詳解】若方程表示橢圓,則,解得或.故方程表示橢圓的充分不必要條件可以是.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用雙曲線定義,將的最小值問題轉(zhuǎn)化為的最小值問題,然后結(jié)合圖形可解.【詳解】由題設(shè)知,,,,圓的半徑由點(diǎn)為雙曲線右支上的動(dòng)點(diǎn)知∴∴.故答案為:14、或【解析】由題意,設(shè)所求直線方程為,根據(jù)兩平行直線間的距離公式即可求解.【詳解】解:由題意,設(shè)所求直線方程為,因?yàn)橹本€與直線的距離為,所以,解得或,所以所求直線方程為或,故答案為:或.15、焦點(diǎn)在軸上的橢圓,焦點(diǎn)在軸上的雙曲線,兩條直線.【解析】討論,和三種情況,進(jìn)而根據(jù)曲線方程的特征得到答案.【詳解】若,則曲線:,而,曲線表示焦點(diǎn)在y軸上的橢圓;若,則曲線:或,曲線表示兩條直線;若,則曲線:,而,曲線表示焦點(diǎn)在x軸上的雙曲線.故答案為:焦點(diǎn)在y軸上橢圓,焦點(diǎn)在x軸上的雙曲線,兩條直線.16、【解析】由題意畫出函數(shù)圖象,把函數(shù)有3個(gè)不同的零點(diǎn)的問題轉(zhuǎn)化為函數(shù)與函數(shù)有3個(gè)交點(diǎn)的問題,分為和時(shí)分類討論即可.【詳解】作出函數(shù)的圖象如下圖所示,要使函數(shù)有3個(gè)不同的零點(diǎn),則函數(shù)和函數(shù)有三個(gè)交點(diǎn),由已知得函數(shù)恒過點(diǎn),當(dāng)時(shí),過點(diǎn)時(shí),函數(shù)和函數(shù)有三個(gè)交點(diǎn),將代入得,即,當(dāng)時(shí),與相切時(shí),此時(shí)函數(shù)和函數(shù)有兩個(gè)交點(diǎn),如圖所示,,設(shè)此時(shí)的切點(diǎn)為,則直線的斜率為,直線的方程為,將點(diǎn)代入得,解得,此時(shí)的斜率為,將逆時(shí)針旋轉(zhuǎn)至和平行時(shí),即為的位置時(shí),函數(shù)和函數(shù)有三個(gè)交點(diǎn),此時(shí),故的范圍為,綜上所述實(shí)數(shù)k的取值范圍為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由等差數(shù)列以及等比中項(xiàng)的公式代入聯(lián)立求解出,再利用等差數(shù)列的通項(xiàng)公式即可求得答案;(2)利用分組求和法,根據(jù)求和公式分別求出等差數(shù)列與等比數(shù)列的前項(xiàng)和再相加即可.【詳解】(1)由題意,,,即,聯(lián)立解得,所以數(shù)列的通項(xiàng)公式為;(2)由(1)得,,所以【點(diǎn)睛】關(guān)于數(shù)列前項(xiàng)和的求和方法:分組求和法:兩個(gè)數(shù)列等差或者等比數(shù)列相加時(shí)利用分組求和法計(jì)算;裂項(xiàng)相加法:數(shù)列的通項(xiàng)公式為分式時(shí)可考慮裂項(xiàng)相消法求和;錯(cuò)位相減法:等差乘以等比數(shù)列的情況利用錯(cuò)位相減法求和.18、(1)(2)答案見解析【解析】(1)根據(jù)切點(diǎn)處的導(dǎo)數(shù)等于切線斜率,切點(diǎn)在曲線上可得切線方程;(2)求導(dǎo),分類討論可得.【小問1詳解】當(dāng)時(shí),,,,則,所以在處的切線方程為【小問2詳解】,,當(dāng)時(shí),,函數(shù)在R上單調(diào)遞增;當(dāng)時(shí),令,則,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增當(dāng)時(shí),的單調(diào)遞增區(qū)間為,當(dāng)時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為19、(1)列聯(lián)表答案見解析;(2);(3)沒有的把握認(rèn)為“是否了解數(shù)字人民幣”與“學(xué)歷高低”有關(guān).【解析】(1)根據(jù)給定表中數(shù)據(jù)列出列聯(lián)表作答.(2)利用給定條件結(jié)合古典概率公式計(jì)算作答.(3)利用(1)中信息求出的觀測值,再與臨界值表比對(duì)作答.【小問1詳解】列聯(lián)表如下:低學(xué)歷高學(xué)歷合計(jì)不了解數(shù)字人民幣150125275了解數(shù)字人民幣250275525合計(jì)400400800【小問2詳解】由(1)知,被調(diào)查者中低學(xué)歷的有400,其中不了解數(shù)字人民幣的有150,從400人中任取2人有個(gè)基本事件,它們等可能,被選中的2人中至少有1人對(duì)數(shù)字人民幣不了解的事件A有個(gè)基本事件,所以被選中的2人中至少有1人對(duì)數(shù)字人民幣不了解的概率.【小問3詳解】由(1)知,的觀測值為,所以沒有的把握認(rèn)為“是否了解數(shù)字人民幣”與“學(xué)歷高低”有關(guān).20、(1);(2).【解析】(1)根據(jù)已知條件,結(jié)合垂徑定理,以及點(diǎn)到直線的距離公式,即可求解(2)根據(jù)已知圓的方程,令y=0,結(jié)合韋達(dá)定理,求出圓心的橫坐標(biāo),即可求出圓心,再結(jié)合勾股定理,即可求出半徑【小問1詳解】∵圓C:,∴,即圓心為(-1,1),半徑r=3,∵直線y=x,即x-y=0,∴圓心(-1,1)到直線x-y=0的距離d=,∴直線y=x被圓C所截得的弦長為=【小問2詳解】設(shè)A(x1,y1),B(x2,y2),∵圓C:,圓C與x軸交于A,B兩點(diǎn),∴x2-2x-7=0,則,|x1-x2|==,∴圓心的橫坐標(biāo)為x=,∵圓心在直線y=x+1上,∴圓心為(1,2),∴半徑r=,故圓M的方程為21、答案見解析【解析】(1)根據(jù)題設(shè)條件可得關(guān)于基本量的方程組,求解后可得的通項(xiàng)公式.(2)利用公式法可求數(shù)列的前項(xiàng)和.【詳解】解:選擇條件①和條件②(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴,.(2)設(shè)等比數(shù)列的公比為,,∴解得,.設(shè)數(shù)列的前項(xiàng)和為,∴.選擇條件①和條件③:(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴.(2),設(shè)等比數(shù)列的公比為,.∴,解得,.設(shè)數(shù)列的前項(xiàng)和為,∴.選擇條件②和條件③:(1)設(shè)等比數(shù)列的公比為,,∴,解得,,.設(shè)等差數(shù)列的公差
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具購銷合同案例
- 圖書出版合作協(xié)議書格式
- 汽車抵押借款合同協(xié)議書示例
- 個(gè)人合伙協(xié)議書格式
- 2024智能化工程維修合同
- 房地產(chǎn)抵押合同常見條款
- 教師臨時(shí)雇傭合同
- 2023年高考地理重點(diǎn)難點(diǎn)考點(diǎn)通練-環(huán)境安全與國家安全(原卷版)
- 工廠合作伙伴意向書
- 各類協(xié)議書的法律效力
- 銀行培訓(xùn)手冊:流動(dòng)性覆蓋率(LCR)
- 復(fù)變函數(shù)在通信工程中的應(yīng)用
- As-I-Lay-Dying
- 8051-芯片手冊
- 法檢商品目錄
- 中國恒大集團(tuán)籌資狀況分析
- 消防火災(zāi)自動(dòng)報(bào)警主機(jī)更換(增加)施工方案
- 《加盟申請表》word版
- 鋼絲繩的規(guī)格和意義
- profibus現(xiàn)場總線故障診斷與排除
- 大學(xué)生生涯決策平衡單樣表
評(píng)論
0/150
提交評(píng)論