版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年山西省重點(diǎn)高中高三年級(jí)下學(xué)期一調(diào)考試數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國(guó)其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒(méi)有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門(mén)排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無(wú)法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類(lèi)”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測(cè),若出現(xiàn)陽(yáng)性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測(cè)呈陽(yáng)性的概率均為()且相互獨(dú)立,該家庭至少檢測(cè)了5個(gè)人才能確定為“感染高危戶”的概率為,當(dāng)時(shí),最大,則()A. B. C. D.2.一個(gè)正三角形的三個(gè)頂點(diǎn)都在雙曲線的右支上,且其中一個(gè)頂點(diǎn)在雙曲線的右頂點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.3.對(duì)于函數(shù),若滿足,則稱為函數(shù)的一對(duì)“線性對(duì)稱點(diǎn)”.若實(shí)數(shù)與和與為函數(shù)的兩對(duì)“線性對(duì)稱點(diǎn)”,則的最大值為()A. B. C. D.4.已知的垂心為,且是的中點(diǎn),則()A.14 B.12 C.10 D.85.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3 C. D.26.已知為定義在上的偶函數(shù),當(dāng)時(shí),,則()A. B. C. D.7.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.8.函數(shù)f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數(shù)的圖象向右平移個(gè)單位后得到的函數(shù)圖象關(guān)于直線x=對(duì)稱,則函數(shù)f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)9.下列幾何體的三視圖中,恰好有兩個(gè)視圖相同的幾何體是()A.正方體 B.球體C.圓錐 D.長(zhǎng)寬高互不相等的長(zhǎng)方體10.集合,,則()A. B. C. D.11.已知拋物線的焦點(diǎn)為,過(guò)焦點(diǎn)的直線與拋物線分別交于、兩點(diǎn),與軸的正半軸交于點(diǎn),與準(zhǔn)線交于點(diǎn),且,則()A. B.2 C. D.312.設(shè)復(fù)數(shù),則=()A.1 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,點(diǎn)是邊的中點(diǎn),則__________,________.14.已知圓C:經(jīng)過(guò)拋物線E:的焦點(diǎn),則拋物線E的準(zhǔn)線與圓C相交所得弦長(zhǎng)是__________.15.已知邊長(zhǎng)為的菱形中,,現(xiàn)沿對(duì)角線折起,使得二面角為,此時(shí)點(diǎn),,,在同一個(gè)球面上,則該球的表面積為_(kāi)_______.16.的展開(kāi)式中,x5的系數(shù)是_________.(用數(shù)字填寫(xiě)答案)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在中國(guó),不僅是購(gòu)物,而且從共享單車(chē)到醫(yī)院掛號(hào)再到公共繳費(fèi),日常生活中幾乎全部領(lǐng)域都支持手機(jī)支付.出門(mén)不帶現(xiàn)金的人數(shù)正在迅速增加。中國(guó)人民大學(xué)和法國(guó)調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機(jī)抽取了60名,統(tǒng)計(jì)他們出門(mén)隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機(jī)支付族”,其他為“非手機(jī)支付族”.(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補(bǔ)充完整,并判斷有多大的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān)?(2)用樣本估計(jì)總體,若從騰訊服務(wù)的用戶中隨機(jī)抽取3位女性用戶,這3位用戶中“手機(jī)支付族”的人數(shù)為,求隨機(jī)變量的期望和方差;(3)某商場(chǎng)為了推廣手機(jī)支付,特推出兩種優(yōu)惠方案,方案一:手機(jī)支付消費(fèi)每滿1000元可直減100元;方案二:手機(jī)支付消費(fèi)每滿1000元可抽獎(jiǎng)2次,每次中獎(jiǎng)的概率同為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)一次打9折,中獎(jiǎng)兩次打8.5折.如果你打算用手機(jī)支付購(gòu)買(mǎi)某樣價(jià)值1200元的商品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.82818.(12分)棉花的纖維長(zhǎng)度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專(zhuān)家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取21根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長(zhǎng)度不低于311的為“長(zhǎng)纖維”,其余為“短纖維”)纖維長(zhǎng)度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫(xiě)下面列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)1.125的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.甲地乙地總計(jì)長(zhǎng)纖維短纖維總計(jì)附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長(zhǎng)度是否為“長(zhǎng)纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測(cè),在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.19.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(2)若,對(duì),恒有成立,求實(shí)數(shù)的最小值.20.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明:.21.(12分)已知數(shù)列滿足,,其前n項(xiàng)和為.(1)通過(guò)計(jì)算,,,猜想并證明數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿足,,,若數(shù)列是單調(diào)遞減數(shù)列,求常數(shù)t的取值范圍.22.(10分)已知數(shù)列和,前項(xiàng)和為,且,是各項(xiàng)均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
根據(jù)題意分別求出事件A:檢測(cè)5個(gè)人確定為“感染高危戶”發(fā)生的概率和事件B:檢測(cè)6個(gè)人確定為“感染高危戶”發(fā)生的概率,即可得出的表達(dá)式,再根據(jù)基本不等式即可求出.【詳解】設(shè)事件A:檢測(cè)5個(gè)人確定為“感染高危戶”,事件B:檢測(cè)6個(gè)人確定為“感染高危戶”,∴,.即設(shè),則∴當(dāng)且僅當(dāng)即時(shí)取等號(hào),即.故選:A.【點(diǎn)睛】本題主要考查概率的計(jì)算,涉及相互獨(dú)立事件同時(shí)發(fā)生的概率公式的應(yīng)用,互斥事件概率加法公式的應(yīng)用,以及基本不等式的應(yīng)用,解題關(guān)鍵是對(duì)題意的理解和事件的分解,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力和數(shù)學(xué)建模能力,屬于較難題.2、D【解析】
因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對(duì)稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對(duì)稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【點(diǎn)睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.3、D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對(duì)稱點(diǎn)”,所以,故(當(dāng)且僅當(dāng)時(shí)取等號(hào)).又與為函數(shù)的“線性對(duì)稱點(diǎn),所以,所以,從而的最大值為.故選:D.【點(diǎn)睛】本題以新定義為背景,考查指數(shù)函數(shù)的運(yùn)算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達(dá)式是解題的關(guān)鍵,屬于中檔題.4、A【解析】
由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因?yàn)闉榈拇剐模?,所以,而,所以,因?yàn)槭堑闹悬c(diǎn),所以.故選:A【點(diǎn)睛】本題考查了利用向量的線性運(yùn)算和向量的數(shù)量積的運(yùn)算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5、D【解析】
根據(jù)拋物線的定義求得,由此求得的長(zhǎng).【詳解】過(guò)作,垂足為,設(shè)與軸的交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.6、D【解析】
判斷,利用函數(shù)的奇偶性代入計(jì)算得到答案.【詳解】∵,∴.故選:【點(diǎn)睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學(xué)生對(duì)于函數(shù)性質(zhì)的靈活運(yùn)用.7、D【解析】
根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進(jìn)而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因?yàn)椋?,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點(diǎn)睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.8、D【解析】
由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對(duì)稱,得到,由此求得滿足條件的的值,即可求得答案.【詳解】分析:由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對(duì)稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因?yàn)楹瘮?shù)的最小正周期是,所以,解得,所以,將該函數(shù)的圖像向右平移個(gè)單位后,得到圖像所對(duì)應(yīng)的函數(shù)解析式為,由此函數(shù)圖像關(guān)于直線對(duì)稱,得:,即,取,得,滿足,所以函數(shù)的解析式為,故選D.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及函數(shù)的解析式的求解,其中解答中根據(jù)三角函數(shù)的圖象變換得到,再根據(jù)三角函數(shù)的性質(zhì)求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.9、C【解析】
根據(jù)基本幾何體的三視圖確定.【詳解】正方體的三個(gè)三視圖都是相等的正方形,球的三個(gè)三視圖都是相等的圓,圓錐的三個(gè)三視圖有一個(gè)是圓,另外兩個(gè)是全等的等腰三角形,長(zhǎng)寬高互不相等的長(zhǎng)方體的三視圖是三個(gè)兩兩不全等的矩形.故選:C.【點(diǎn)睛】本題考查基本幾何體的三視圖,掌握基本幾何體的三視圖是解題關(guān)鍵.10、A【解析】
計(jì)算,再計(jì)算交集得到答案.【詳解】,,故.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.11、B【解析】
過(guò)點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由和拋物線的定義可求得,利用拋物線的性質(zhì)可構(gòu)造方程求得,進(jìn)而求得結(jié)果.【詳解】過(guò)點(diǎn)作準(zhǔn)線的垂線,垂足為,與軸交于點(diǎn),由拋物線解析式知:,準(zhǔn)線方程為.,,,,由拋物線定義知:,,,.由拋物線性質(zhì)得:,解得:,.故選:.【點(diǎn)睛】本題考查拋物線定義與幾何性質(zhì)的應(yīng)用,關(guān)鍵是熟練掌握拋物線的定義和焦半徑所滿足的等式.12、A【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算,代入化簡(jiǎn)即可求解.【詳解】復(fù)數(shù),則故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算與化簡(jiǎn)求值,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據(jù)正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數(shù)量積求解即可.【詳解】中,,,可得因?yàn)辄c(diǎn)是邊的中點(diǎn),所以故答案為:;.【點(diǎn)睛】本題主要考查了三角形的解法,向量的數(shù)量積的應(yīng)用,考查計(jì)算能力,屬于中檔題.14、【解析】
求出拋物線的焦點(diǎn)坐標(biāo),代入圓的方程,求出的值,再求出準(zhǔn)線方程,利用點(diǎn)到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長(zhǎng)的一半,進(jìn)而求出弦長(zhǎng).【詳解】拋物線E:的準(zhǔn)線為,焦點(diǎn)為(0,1),把焦點(diǎn)的坐標(biāo)代入圓的方程中,得,所以圓心的坐標(biāo)為,半徑為5,則圓心到準(zhǔn)線的距離為1,所以弦長(zhǎng).【點(diǎn)睛】本題考查了拋物線的準(zhǔn)線、圓的弦長(zhǎng)公式.15、【解析】
分別取,的中點(diǎn),,連接,由圖形的對(duì)稱性可知球心必在的延長(zhǎng)線上,設(shè)球心為,半徑為,,由勾股定理可得、,再根據(jù)球的面積公式計(jì)算可得;【詳解】如圖,分別取,的中點(diǎn),,連接,則易得,,,,由圖形的對(duì)稱性可知球心必在的延長(zhǎng)線上,設(shè)球心為,半徑為,,可得,解得,.故該球的表面積為.故答案為:【點(diǎn)睛】本題考查多面體的外接球的計(jì)算,屬于中檔題.16、-189【解析】由二項(xiàng)式定理得,令r=5得x5的系數(shù)是.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)列聯(lián)表見(jiàn)解析,99%;(2),;(3)第二種優(yōu)惠方案更劃算.【解析】
(1)根據(jù)已知數(shù)據(jù)得出列聯(lián)表,再根據(jù)獨(dú)立性檢驗(yàn)得出結(jié)論;(2)有數(shù)據(jù)可知,女性中“手機(jī)支付族”的概率為,知服從二項(xiàng)分布,即,可求得其期望和方差;(3)若選方案一,則需付款元,若選方案二,設(shè)實(shí)際付款元,,則的取值為1200,1080,1020,求出實(shí)際付款的期望,再比較兩個(gè)方案中的付款的金額的大小,可得出選擇的方案.【詳解】(1)由已知得出聯(lián)列表:,所以,有99%的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān);(2)有數(shù)據(jù)可知,女性中“手機(jī)支付族”的概率為,,;(3)若選方案一,則需付款元若選方案二,設(shè)實(shí)際付款元,,則的取值為1200,1080,1020,,,,選擇第二種優(yōu)惠方案更劃算【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),二項(xiàng)分布的期望和方差,以及由期望值確定決策方案,屬于中檔題.18、(1)在犯錯(cuò)誤概率不超過(guò)的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.(2)見(jiàn)解析【解析】試題分析:(1)可以根據(jù)所給表格填出列聯(lián)表,利用列聯(lián)表求出,結(jié)合所給數(shù)據(jù),應(yīng)用獨(dú)立性檢驗(yàn)知識(shí)可作出判斷;(2)寫(xiě)出的所有可能取值,并求出對(duì)應(yīng)的概率,可列出分布列并進(jìn)一步求出的數(shù)學(xué)期望.試題解析:(Ⅰ)根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表:甲地乙地總計(jì)長(zhǎng)纖維91625短纖維11415總計(jì)212141根據(jù)列聯(lián)表中的數(shù)據(jù),可得所以,在犯錯(cuò)誤概率不超過(guò)的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.(Ⅱ)由表可知在8根中乙地“短纖維”的根數(shù)為,的可能取值為:1,1,2,3,,,,.∴的分布列為:1123∴.19、(1)(2)【解析】
(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設(shè),利用求二階導(dǎo)數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因?yàn)樵谏蠁握{(diào)遞增,所以在恒成立,即在恒成立,當(dāng)時(shí),上式成立,當(dāng),有,需,而,,,,故綜上,實(shí)數(shù)的取值范圍是(2)設(shè),,則,令,,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當(dāng)即時(shí),,不符合;當(dāng)即時(shí),,符合當(dāng)即時(shí),根據(jù)零點(diǎn)存在定理,,使,有時(shí),,在單調(diào)遞減,時(shí),,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,,實(shí)數(shù)的最小值為【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類(lèi)討論的數(shù)學(xué)思想方法,屬于難題.20、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】
(1)求導(dǎo)得,分類(lèi)討論和,利用導(dǎo)數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構(gòu)造函數(shù),利用導(dǎo)數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當(dāng)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 鄉(xiāng)村道路清潔能源設(shè)施安裝協(xié)議
- 2025簡(jiǎn)易食堂承包合同
- 2024年酒店管理合同標(biāo)的酒店管理與運(yùn)營(yíng)策略
- 2025商品房買(mǎi)賣(mài)合同版本大全
- 2025企業(yè)集體合同樣本
- 2025工礦產(chǎn)品的購(gòu)銷(xiāo)合同
- 2025年抗貧血藥項(xiàng)目合作計(jì)劃書(shū)
- 2025電源材料買(mǎi)賣(mài)合同
- 2025年多層電容器用陶瓷介質(zhì)粉料項(xiàng)目發(fā)展計(jì)劃
- 2025餐飲合作合同(范本)
- 山東省濱州市2023-2024學(xué)年高一上學(xué)期1月期末考試 政治 含答案
- 電力行業(yè)電力調(diào)度培訓(xùn)
- 【MOOC】氣排球-東北大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 全力以赴備戰(zhàn)期末-2024-2025學(xué)年上學(xué)期備戰(zhàn)期末考試主題班會(huì)課件
- 《慶澳門(mén)回歸盼祖國(guó)統(tǒng)一》主題班會(huì)教案
- 物流公司自然災(zāi)害、突發(fā)性事件應(yīng)急預(yù)案(2篇)
- 《視頻拍攝與制作:短視頻?商品視頻?直播視頻(第2版)》-課程標(biāo)準(zhǔn)
- 公司戰(zhàn)略與風(fēng)險(xiǎn)管理戰(zhàn)略實(shí)施
- 2024年-2025年《農(nóng)作物生產(chǎn)技術(shù)》綜合知識(shí)考試題庫(kù)及答案
- 洗衣房工作人員崗位職責(zé)培訓(xùn)
- 廣東省深圳市光明區(qū)2022-2023學(xué)年五年級(jí)上學(xué)期數(shù)學(xué)期末試卷(含答案)
評(píng)論
0/150
提交評(píng)論