![2024屆天津市河?xùn)|區(qū)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第1頁](http://file4.renrendoc.com/view/04ea48d7c416c9413fde31bd462baedb/04ea48d7c416c9413fde31bd462baedb1.gif)
![2024屆天津市河?xùn)|區(qū)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第2頁](http://file4.renrendoc.com/view/04ea48d7c416c9413fde31bd462baedb/04ea48d7c416c9413fde31bd462baedb2.gif)
![2024屆天津市河?xùn)|區(qū)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第3頁](http://file4.renrendoc.com/view/04ea48d7c416c9413fde31bd462baedb/04ea48d7c416c9413fde31bd462baedb3.gif)
![2024屆天津市河?xùn)|區(qū)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第4頁](http://file4.renrendoc.com/view/04ea48d7c416c9413fde31bd462baedb/04ea48d7c416c9413fde31bd462baedb4.gif)
![2024屆天津市河?xùn)|區(qū)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題含解析_第5頁](http://file4.renrendoc.com/view/04ea48d7c416c9413fde31bd462baedb/04ea48d7c416c9413fde31bd462baedb5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆天津市河?xùn)|區(qū)高二上數(shù)學(xué)期末綜合測(cè)試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若命題p為真命題,命題q為假命題,則下列命題為真命題的是()A. B.C. D.2.設(shè)正方體的棱長(zhǎng)為,則點(diǎn)到平面的距離是()A. B.C. D.3.設(shè)為坐標(biāo)原點(diǎn),直線與拋物線C:交于,兩點(diǎn),若,則的焦點(diǎn)坐標(biāo)為()A. B.C. D.4.下列直線中,與直線垂直的是()A. B.C. D.5.如圖,在四面體OABC中,,,,點(diǎn)在線段上,且,為的中點(diǎn),則等于()A. B.C. D.6.已知,若,則()A. B.2C. D.e7.在四棱錐中,底面是正方形,為的中點(diǎn),若,則()A. B.C. D.8.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),為坐標(biāo)原點(diǎn),且,則()A.4 B.2C. D.9.已知函數(shù),若對(duì)任意,都有成立,則a的取值范圍為()A. B.C. D.10.設(shè)實(shí)數(shù)x,y滿足約束條件則的最小值()A.5 B.C. D.811.接種疫苗是預(yù)防控制新冠疫情最有效的方法,我國(guó)自2021年1月9日起實(shí)施全民免費(fèi)接種新冠疫苗并持續(xù)加快推進(jìn)接種工作.某地為方便居民接種,共設(shè)置了A、B、C三個(gè)新冠疫苗接種點(diǎn),每位接種者可去任一個(gè)接種點(diǎn)接種.若甲、乙兩人去接種新冠疫苗,則兩人不在同一接種點(diǎn)接種疫苗的概率為()A. B.C. D.12.過橢圓+=1左焦點(diǎn)F1引直線交橢圓于A、B兩點(diǎn),F(xiàn)2是橢圓的右焦點(diǎn),則△ABF2的周長(zhǎng)是()A.20 B.18C.10 D.16二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,若圓的過點(diǎn)的三條弦的長(zhǎng),,構(gòu)成等差數(shù)列,則該數(shù)列的公差的最大值是______.14.已知數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和滿足,則__________;記表示不超過的最大整數(shù),例如,若,設(shè)的前項(xiàng)和為,則__________15.雙曲線的實(shí)軸長(zhǎng)為______.16.在中,內(nèi)角,,的對(duì)邊分別為,,,若,且,則_______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在等差數(shù)列中,,.(1)求數(shù)列通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.18.(12分)設(shè)命題p:實(shí)數(shù)x滿足,其中;命題q:若,且為真,求實(shí)數(shù)x的取值范圍;若是的充分不必要條件,求實(shí)數(shù)m的取值范圍19.(12分)已知直線與圓.(1)當(dāng)直線l恰好平分圓C的周長(zhǎng)時(shí),求m的值;(2)當(dāng)直線l被圓C截得的弦長(zhǎng)為時(shí),求m的值.20.(12分)已知正項(xiàng)數(shù)列的前項(xiàng)和滿足(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和.21.(12分)已知直線經(jīng)過點(diǎn),且滿足下列條件,求相應(yīng)的方程.(1)過點(diǎn);(2)與直線垂直.22.(10分)已知數(shù)列的前n項(xiàng)和為,且,,數(shù)列滿足:,,,.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和;(3)若不等式對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)邏輯聯(lián)結(jié)詞“且”,一假則假,對(duì)四個(gè)選項(xiàng)一一判斷直接即可判斷.【詳解】邏輯聯(lián)結(jié)詞“且”,一假則假.因?yàn)槊}p為真命題,命題q為假命題,所以為假命題,為真命題.所以,為假,故A錯(cuò)誤;為真,故B正確;為假,故C錯(cuò)誤;為假,故D錯(cuò)誤.故選:B2、D【解析】建立空間直角坐標(biāo)系,根據(jù)空間向量所學(xué)點(diǎn)到面的距離公式求解即可.【詳解】建立如下圖所示空間直角坐標(biāo)系,以為坐標(biāo)原點(diǎn),所在直線為軸,所在直線為軸,所在直線為軸.因?yàn)檎襟w的邊長(zhǎng)為4,所以,,,,,所以,,,設(shè)平面的法向量,所以,,即,設(shè),所以,,即,設(shè)點(diǎn)到平面的距離為,所以,故選:D.3、B【解析】根據(jù)題中所給的條件,結(jié)合拋物線的對(duì)稱性,可知,從而可以確定出點(diǎn)的坐標(biāo),代入方程求得的值,進(jìn)而求得其焦點(diǎn)坐標(biāo),得到結(jié)果.【詳解】因?yàn)橹本€與拋物線交于兩點(diǎn),且,根據(jù)拋物線的對(duì)稱性可以確定,所以,代入拋物線方程,求得,所以其焦點(diǎn)坐標(biāo)為,故選:B.【點(diǎn)睛】該題考查的是有關(guān)圓錐曲線的問題,涉及到的知識(shí)點(diǎn)有直線與拋物線的交點(diǎn),拋物線的對(duì)稱性,點(diǎn)在拋物線上的條件,拋物線的焦點(diǎn)坐標(biāo),屬于簡(jiǎn)單題目.4、C【解析】,,若,則,項(xiàng),符合條件,故選5、D【解析】利用空間向量的加法與減法可得出關(guān)于、、的表達(dá)式.【詳解】.故選:D.6、B【解析】求得導(dǎo)函數(shù),則,計(jì)算即可得出結(jié)果.【詳解】,.,解得:.故選:B7、C【解析】由為的中點(diǎn),根據(jù)向量的運(yùn)算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點(diǎn),且,根據(jù)向量的運(yùn)算法則,可得.故選:C.8、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點(diǎn),可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因?yàn)闉閽佄锞€上一點(diǎn),所以,解得.故選:B.【點(diǎn)睛】本題考查了平面向量加法的坐標(biāo)運(yùn)算,考查了求拋物線方程,屬于基礎(chǔ)題.9、C【解析】求出函數(shù)的導(dǎo)數(shù),再對(duì)給定不等式等價(jià)變形,分離參數(shù)借助均值不等式計(jì)算作答.【詳解】對(duì)函數(shù)求導(dǎo)得:,,,則,,而,當(dāng)且僅當(dāng),即時(shí)“=”,于是得,解得,所以a的取值范圍為.故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)睛:涉及不等式恒成立問題,將給定不等式等價(jià)轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)思想是解決問題的關(guān)鍵.10、B【解析】做出,滿足約束條件的可行域,結(jié)合圖形可得答案.【詳解】做出,滿足約束條件可行域如圖,化為,平移直線,當(dāng)直線經(jīng)過點(diǎn)時(shí)有最小值,由得,所以的最小值為.故選:B.11、C【解析】利用古典概型的概率公式可求出結(jié)果【詳解】由題知,基本事件總數(shù)為甲、乙兩人不在同一接種點(diǎn)接種疫苗的基本事件數(shù)為由古典概型概率計(jì)算公式可得所求概率故選:12、A【解析】根據(jù)橢圓的定義求得正確選項(xiàng).【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長(zhǎng)為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)題意,求得過點(diǎn)的直線截圓所得弦長(zhǎng)的最大值和最小值,即可求得公差的最大值.【詳解】圓的圓心,半徑,設(shè)點(diǎn)為點(diǎn),因?yàn)椋庶c(diǎn)在圓內(nèi),當(dāng)直線過點(diǎn),且經(jīng)過圓心時(shí),該直線截圓所得弦長(zhǎng)取得最大值;當(dāng)直線過點(diǎn),且與直線垂直時(shí),該直線截圓所得弦長(zhǎng)取得最小值,此時(shí),則滿足題意的直線為,即,又,則該直線截圓所得弦長(zhǎng)為;根據(jù)題意,要使得數(shù)列的公差最大,則,故最大公差.故答案為:.14、①.;②.60.【解析】先根據(jù)并結(jié)合等差數(shù)列的定義求出;然后討論n的取值范圍,討論出分別取1,2,3,4,5的情況,進(jìn)而求出.【詳解】由題意,,n=1時(shí),,滿足,時(shí),,于是,,因?yàn)?,所?所以,是1為首項(xiàng),2為公差的等差數(shù)列,所以.若,即時(shí),,若,則時(shí),,若,則時(shí),,若,則時(shí),,若,則或22時(shí),,于是,.故答案為:2n-1;60.15、4【解析】根據(jù)雙曲線標(biāo)準(zhǔn)方程的特征即可求解.【詳解】由題可知.故答案為:4.16、【解析】代入,展開整理得,①化為,與①式相加得,轉(zhuǎn)化為關(guān)于的方程,求解即可得出結(jié)論.【詳解】因?yàn)椋?,所以,因?yàn)?,所以,則,整理得,解得.故答案為:.【點(diǎn)睛】本題考查正弦定理的邊角互化,考查三角函數(shù)化簡(jiǎn)求值,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用等差數(shù)列的基本量,根據(jù)題意,列出方程,即可求得公差以及通項(xiàng)公式;(2)根據(jù)(1)中所求,結(jié)合等差數(shù)列的前項(xiàng)和的公式,求得,以及,再利用等比數(shù)列的前項(xiàng)和公式求得.【小問1詳解】因?yàn)?,所以,故可得,所?【小問2詳解】因?yàn)?,所?于是,令,則.顯然數(shù)列是等比數(shù)列,且,公比,所以數(shù)列的前n項(xiàng)和.18、(1)(2)【解析】解二次不等式,其中解得,解得:,取再求交集即可;寫出命題所對(duì)應(yīng)的集合,命題p:,命題q:,由是的充分不必要條件,即p是q的充分不必要條件,則A是B的真子集,列不等式組可求解【詳解】解:(1)由,其中;解得,又,即,由得:,又為真,則,得:,故實(shí)數(shù)x的取值范圍為;由得:命題p:,命題q:,由是的充分不必要條件,即p是q的充分不必要條件,A是B的真子集,所以,即故實(shí)數(shù)m取值范圍為:.【點(diǎn)睛】本題考查了二次不等式的解法,復(fù)合命題的真假,命題與集合的關(guān)系,屬于簡(jiǎn)單題19、(1);(2)1.【解析】(1)將圓C的圓心坐標(biāo)代入直線l的方程計(jì)算作答.(2)由給定條件求出圓心C到直線l的距離,再利用點(diǎn)到直線距離公式計(jì)算作答.【小問1詳解】圓的圓心,半徑,因直線l平分圓C的周長(zhǎng),則直線l過圓心,即,解得,所以m的值是.【小問2詳解】由(1)知,圓C的圓心,半徑,因直線l被圓C截得的弦長(zhǎng)為,則有圓心C到直線l的距離,因此,,解得,所以m的值是1.20、(1)(2)【解析】小問1:利用通項(xiàng)公式與的關(guān)系即可求出;小問2:根據(jù)(1)可得,結(jié)合錯(cuò)位相減法即可求出前n項(xiàng)和【小問1詳解】當(dāng)時(shí),,.當(dāng)時(shí),,…①,,…②①②得:,即:.,是以為首項(xiàng),以為公差的等差數(shù)列,;【小問2詳解】由(1)可知,則,…①兩邊同乘得:,…②①②得:,.21、(1)(2)【解析】(1)直接利用兩點(diǎn)式寫出直線的方程;(2)先求出直線的斜率,由點(diǎn)斜式寫出直線的方程.【小問1詳解】直線經(jīng)過,兩點(diǎn),由兩點(diǎn)式得直線的方程為.【小問2詳解】與直線垂直直線的斜率為由點(diǎn)斜式得直線的方程為.22、(1),;(2);(3).【解析】(1)由可得數(shù)列是等比數(shù)列,即可求得,由得數(shù)列是等差數(shù)列,即可求得.(2)由(1)可得,再利用錯(cuò)位相減法求和即得.(3)將問題等價(jià)轉(zhuǎn)化為對(duì)任意恒成立,構(gòu)造數(shù)列并判斷其單調(diào)性,即可求解作答.【小問1詳解】數(shù)列的前項(xiàng)和為,,,當(dāng)時(shí),,則,而當(dāng)時(shí),,即得,因此,數(shù)列是以1為首項(xiàng),3為公比的等比數(shù)列,則,數(shù)列中,,,則數(shù)列是等差數(shù)列,而,,即有公差
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- CH-5兒童各年齡期保健課件
- 2025年全球及中國(guó)纜索式起重機(jī)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國(guó)高壓有載分接開關(guān)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025年全球及中國(guó)可見光波段高光譜成像(HSI)設(shè)備行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球墻磨機(jī)開關(guān)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)打印貼標(biāo)機(jī)和耗材行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2025-2030全球工業(yè)PTFE密封件行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球超高頻RFID一次性腕帶行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球便攜手持式光譜儀行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球除濕白帶丸行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025民政局離婚協(xié)議書范本(民政局官方)4篇
- 2024年03月四川農(nóng)村商業(yè)聯(lián)合銀行信息科技部2024年校園招考300名工作人員筆試歷年參考題庫(kù)附帶答案詳解
- 小學(xué)一年級(jí)數(shù)學(xué)上冊(cè)口算練習(xí)題總匯
- ISO17025經(jīng)典培訓(xùn)教材
- 餐飲行業(yè)品牌介紹商務(wù)宣傳PPT模板
- 東南大學(xué)宣講介紹
- 2023年菏澤醫(yī)學(xué)??茖W(xué)校單招綜合素質(zhì)題庫(kù)及答案解析
- 九年級(jí)下冊(cè)-2023年中考?xì)v史總復(fù)習(xí)知識(shí)點(diǎn)速查速記(部編版)
- GB/T 18103-2022實(shí)木復(fù)合地板
- 小學(xué)四年級(jí)語文閱讀理解專項(xiàng)訓(xùn)練
- 輔導(dǎo)班合伙人合同范本(2篇)
評(píng)論
0/150
提交評(píng)論