版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省三明市普通高中2024屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.方程表示的曲線是()A.一個橢圓和一條直線 B.一個橢圓和一條射線C.一條射線 D.一個橢圓2.函數(shù)的圖像大致是()A B.C. D.3.已知圓,則圓上的點到坐標原點的距離的最小值為()A.-1 B.C.+1 D.64.在空間直角坐標系中,方程所表示的圖形是()A圓 B.橢圓C.雙曲線 D.球5.已知函數(shù),那么的值為()A. B.C. D.6.已知拋物線的焦點為,在拋物線上有一點,滿足,則的中點到軸的距離為()A. B.C. D.7.下列說法中正確的是()A.命題“若,則”的否命題是真命題;B.若為真命題,則為真命題;C.“”是“”的充分條件;D.若命題:“,”,則:“,”8.函數(shù)在上單調(diào)遞增,則k的取值范圍是()A B.C. D.9.在中,若,,,則此三角形解的情況為()A.無解 B.兩解C.一解 D.解的個數(shù)不能確定10.設(shè)等差數(shù)列前項和為,若是方程的兩根,則()A.32 B.30C.28 D.2611.已知函數(shù)與,則它們的圖象交點個數(shù)為()A.0 B.1C.2 D.不確定12.設(shè)正實數(shù),滿足(其中為正常數(shù)),若的最大值為3,則()A.3 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等差數(shù)列中,若,,則______,數(shù)列的前n項和為,則______14.長方體中,,,已知點H,A,三點共線,且,則點H到平面ABCD的距離為______15.已知點是拋物線的焦點,點分別是拋物線上位于第一、四象限的點,若,則的面積為__________.16.拋物線的焦點坐標是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知中,分別為角的對邊,且(1)求;(2)若為邊的中點,,求的面積18.(12分)在平面直角坐標系xOy中,已知橢圓E:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為.點P是橢圓上的一動點,且P在第一象限.記的面積為S,當時,.(1)求橢圓E的標準方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點M,N,記和的面積分別為S1和S2.(i)求證:存在常數(shù)λ,使得成立;(ii)求S2-S1的最大值.19.(12分)已知數(shù)列的各項均為正數(shù),,為自然對數(shù)的底數(shù)(1)求函數(shù)的單調(diào)區(qū)間,并比較與的大??;(2)計算,,,由此推測計算的公式,并給出證明;20.(12分)某城市100戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù)21.(12分)如圖1,在中,,,,分別是,邊上的中點,將沿折起到的位置,使,如圖2(1)求點到平面距離;(2)在線段上是否存在一點,使得平面與平面夾角的余弦值為.若存在,求出長;若不存在,請說明理由22.(10分)已知數(shù)列是公比為2的等比數(shù)列,是與的等差中項(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個橢圓或一條直線.故選:A.2、B【解析】由函數(shù)有兩個零點排除選項A,C;再借助導(dǎo)數(shù)探討函數(shù)的單調(diào)性與極值情況即可判斷作答.【詳解】由得,或,選項A,C不滿足;由求導(dǎo)得,當或時,,當時,,于是得在和上都單調(diào)遞增,在上單調(diào)遞減,在處取極大值,在處取極小值,D不滿足,B滿足.故選:B3、A【解析】先求出圓心和半徑,求出圓心到坐標原點的距離,從而求出圓上的點到坐標原點的距離的最小值.【詳解】變形為,故圓心為,半徑為1,故圓心到原點的距離為,故圓上的點到坐標原點的距離最小值為.故選:A4、D【解析】方程表示空間中的點到坐標原點的距離為2,從而可知圖形的形狀【詳解】由,得,表示空間中的點到坐標原點的距離為2,所以方程所表示的圖形是以原點為球心,2為半徑的球,故選:D5、D【解析】直接求導(dǎo),代入計算即可.【詳解】,故.故選:D.6、A【解析】設(shè)點,利用拋物線的定義求出的值,可求得點的橫坐標,即可得解.【詳解】設(shè)點,易知拋物線的焦點為,由拋物線的定義可得,得,所以,點的橫坐標為,故點到軸的距離為.故選:A.7、C【解析】A.寫出原命題的否命題,即可判斷其正誤;B.根據(jù)為真命題可知的p,q真假情況,由此判斷的真假;C.看命題“”能否推出“”,即可判斷;D.根據(jù)含有一個量詞的命題的否定的要求,即可判斷該命題的正誤.【詳解】A.命題“若x=y,則sinx=siny”,其否命題為若“,則”為假命題,因此A不正確;B.命題“”為真命題,則p,q中至少有一個為真命題,當二者為一真一假時,為假命題,故B不正確C.命題“若,則”為真命題,故C正確;D.命題:“,”,為特稱命題,其命題的否定:“,”,故D錯誤,故選:C8、A【解析】對函數(shù)求導(dǎo),由于函數(shù)在給定區(qū)間上單調(diào)遞增,故恒成立.【詳解】由題意可得,,,,.故選:A9、C【解析】求出的值,結(jié)合大邊對大角定理可得出結(jié)論.【詳解】由正弦定理可得可得,因為,則,故為銳角,故滿足條件的只有一個.故選:C.10、A【解析】根據(jù)給定條件利用韋達定理結(jié)合等差數(shù)列性質(zhì)計算作答.【詳解】因是方程的兩根,則又是等差數(shù)列的前項和,于是得,所以.故選:A11、B【解析】令,判斷的單調(diào)性并計算的極值,根據(jù)極值與0的大小關(guān)系判斷的零點個數(shù),得出答案.【詳解】令,則,由,得,∴當時,,當時,.∴當時,取得最小值,∴只有一個零點,即與的圖象只有1個交點.故選:B.12、D【解析】由于,,為正數(shù),且,所以利用基本不等式可求出結(jié)果【詳解】解:因為正實數(shù),滿足(其中為正常數(shù)),所以,則,所以,所以故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】設(shè)等差數(shù)列公差為d,根據(jù)等差數(shù)列的性質(zhì)即可求通項公式;,采用裂項相消的方法求.【詳解】設(shè)等差數(shù)列公差為d,,,;∵,∴.故答案為:;.14、【解析】在長方體中,以點A為原點建立空間直角坐標系,利用已知條件求出點H的坐標作答.【詳解】在長方體中,以點A為原點建立如圖所示的空間直角坐標系,則,,因點H,A,三點共線,令,點,則,又,則,解得,所以點到平面ABCD的距離為.故答案為:15、42【解析】由焦半徑公式求得參數(shù),得拋物線方程,從而可求得兩點縱坐標,再求得直線與軸的交點坐標后可得面積【詳解】因為,所以,拋物線的方程為,把代入方程,得(舍去),即.同理,直線方程為,即.所以直線與軸交于點,所以.故答案為:4216、【解析】將拋物線的方程化為標準形式,即可求解出焦點坐標.【詳解】因為拋物線方程,焦點坐標為,且,所以焦點坐標為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)利用正弦定理化邊為角可得,化簡可得,結(jié)合,即得解;(2)在中,由余弦定理得,可得,利用面積公式即得解【詳解】(1)中由正弦定理及條件,可得,∵,,∴,∵,∴,或,又∵,∴,∴,,∴(2)為邊的中點,,,得,中,由余弦定理得,∴,∴,∵,∴,18、(1)(2)(i)存在常數(shù),使得成立;(ii)的最大值為.【解析】(1)求點P的坐標,再利用面積和離心率,可以求出,然后就可以得到橢圓的標準方程;(2)設(shè)點的坐標和直線方程,聯(lián)立方程,解出的y坐標值與P的坐標之間的關(guān)系,求以焦距為底邊的三角形面積;利用均值定理當且僅當時取等號,求最大值.【小問1詳解】先求第一象限P點坐標:,所以P點的坐標為,所以,所以橢圓E的方程為【小問2詳解】設(shè),易知直線和直線的坐標均不為零,因為,所以設(shè)直線的方程為,直線的方程為,由所以,因為,,所以所以同理由所以,因為,,所以所以,因為,,(i)所以所以存在常數(shù),使得成立.(ii),當且僅當,時取等號,所以的最大值為.19、(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2)詳見解析【解析】(1)求出的定義域,利用導(dǎo)數(shù)求其最大值,得到,取即可得出答案.(2)由,變形求得,,,由此推測:然后用數(shù)學(xué)歸納法證明即可.【小問1詳解】的定義域為,當,即時,單調(diào)遞增;當,即時,單調(diào)遞減故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當時,,即令,得,即【小問2詳解】;;由此推測:①下面用數(shù)學(xué)歸納法證明①(1)當時,左邊右邊,①成立(2)假設(shè)當時,①成立,即當時,,由歸納假設(shè)可得所以當時,①也成立根據(jù)(1)(2),可知①對一切正整數(shù)都成立20、(1);(2)眾數(shù)是,中位數(shù)為【解析】(1)利用頻率之和為一可求得的值;(2)眾數(shù)為最高小矩形底邊中點的橫坐標;中位數(shù)左邊和右邊的直方圖的面積相等可求得中位數(shù)試題解析:(1)由直方圖的性質(zhì)可得,∴(2)月平均用電量的眾數(shù)是,∵,月平均用電量的中位數(shù)在內(nèi),設(shè)中位數(shù)為,由,可得,∴月平均用電量的中位數(shù)為224考點:頻率分布直方圖;中位數(shù);眾數(shù)21、(1)(2)存在,【解析】(1)根據(jù)題意分別由已知條件計算出的面積和的面積,利用求解,(2)如圖建立空間直角坐標系,設(shè),然后求出平面與平面的法向量,利用向量平夾角公式列方程可求得結(jié)果【小問1詳解】在中,,因為,分別是,邊上的中點,所以∥,,所以,所以,因為,所以平面,所以平面,因為平面,所以,所以,因為平面,平面,所以平面平面,因為,所以,因為,所以是等邊三角形,取的中點,連接,則,,因為平面平面,平面平面,平面,所以平面,在中,,所以邊上的高為,所以,在梯形中,,設(shè)點到平面的距離為,因為,所以,所以,得,所以點到平面的距離為【小問2詳解】由(1)可知平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年廣西古建施工承攬合同模板
- 2024年人力資源服務(wù)保密協(xié)議
- 2024年度城市軌道交通安全監(jiān)控系統(tǒng)合同
- 2024年建筑內(nèi)架搭建專業(yè)承包合同
- 2024年度產(chǎn)品研發(fā)與技術(shù)服務(wù)合同
- 2024不能強迫續(xù)訂勞動合同
- 2024年度贈與合同
- 2024年廢舊物品回收處理協(xié)議
- 2024商鋪租賃合同適用于各類商業(yè)街、購物中心店鋪
- 2024丁方提供客戶關(guān)系管理合同
- 航站樓管理部《機場使用手冊》實施細則
- 腦卒中基本知識課件
- 高效溝通與管理技能提升課件
- 消防維保方案 (詳細完整版)
- 四年級上冊英語課件- M3U1 In the school (Period 3 ) 上海牛津版試用版(共15張PPT)
- 檔案館建設(shè)標準
- 高邊坡支護專家論證方案(附有大量的圖件)
- 蘇教版五年級上冊數(shù)學(xué)試題-第一、二單元 測試卷【含答案】
- 人員定位礦用井口唯一性檢測系統(tǒng)
- 電力系統(tǒng)數(shù)據(jù)標記語言E語言格式規(guī)范CIME
- 歷史紀年與歷史年代的計算方法
評論
0/150
提交評論