甘肅省隴南市第五中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第1頁
甘肅省隴南市第五中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第2頁
甘肅省隴南市第五中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第3頁
甘肅省隴南市第五中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第4頁
甘肅省隴南市第五中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

甘肅省隴南市第五中學(xué)2023年高二數(shù)學(xué)第一學(xué)期期末檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某地為應(yīng)對極端天氣搶險救災(zāi),需調(diào)用A,B兩種卡車,其中A型卡車x輛,B型卡車y輛,以備不時之需,若x和y滿足約束條件則最多需調(diào)用卡車的數(shù)量為()A.7 B.9C.13 D.142.已知且,則的值為()A.3 B.4C.5 D.63.已知直線,當(dāng)變化時,所有直線都恒過點()A.B.C.D.4.下圖是一個“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉(zhuǎn)時形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側(cè)的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點A與點C,點B與點D均關(guān)于該雙曲線的對稱中心對稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm5.阿基米德(公元前287年~公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓C的對稱軸為坐標軸,焦點在y軸上,且橢圓C的離心率為,面積為6π,則橢圓C的標準方程為()A. B.C. D.6.小明騎車上學(xué),開始時勻速行駛,途中因交通堵塞停留了一段時間,后為了趕時間加快速度行駛.與以上事件吻合得最好的圖象是()A. B.C. D.7.等差數(shù)列x,,,…的第四項為()A.5 B.6C.7 D.88.已知點是雙曲線的左焦點,是雙曲線右支上一動點,過點作軸垂線并延長交雙曲線左支于點,當(dāng)點向上移動時,的值()A.增大 B.減小C.不變 D.無法確定9.,則()A. B.C. D.10.設(shè)為空間中的四個不同點,則“中有三點在同一條直線上”是“在同一個平面上”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件11.在四棱錐中,分別為的中點,則()A. B.C. D.12.已知函數(shù),若,則等于()A. B.1C.ln2 D.e二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的通項公式,則數(shù)列的前5項為______.14.設(shè)為曲線上一點,,,若,則__________15.直線l過點P(1,3),且它的一個方向向量為(2,1),則直線l的一般式方程為__________.16.若圓和圓的公共弦所在的直線方程為,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的二項展開式中所有項的二項式系數(shù)之和為,(1)求的值;(2)求展開式的所有有理項(指數(shù)為整數(shù)),并指明是第幾項18.(12分)在①,②,③,三個條件中任選一個,補充在下面的問題中,并解答.設(shè)數(shù)列是公比大于0的等比數(shù)列,其前項和為,數(shù)列是等差數(shù)列,其前項和為.已知,,,_____________.(1)請寫出你選擇條件的序號____________;并求數(shù)列和的通項公式;(2)求和.19.(12分)如圖,三棱錐中,兩兩垂直,,且分別為線段的中點.(1)若點是線段的中點,求證:直線平面;(2)求證:平面平面.20.(12分)《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.如圖,在陽馬中,側(cè)棱底面,且,過棱的中點,作交于點,連接(1)證明:.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;(2)記陽馬的體積為,四面體的體積為,求的值;(3)若面與面所成二面角的大小為,求的值21.(12分)已知數(shù)列的前項和分別是,滿足,,且.(1)求數(shù)列的通項公式;(2)若數(shù)列對任意都有恒成立,求.22.(10分)函數(shù)(1)求在上的單調(diào)區(qū)間;(2)當(dāng)時,不等式恒成立,求實數(shù)a的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】畫出約束條件的可行域,利用目標函數(shù)的幾何意義即可求解【詳解】設(shè)調(diào)用卡車的數(shù)量為z,則,其中x和y滿足約束條件,作出可行域如圖所示:當(dāng)目標函數(shù)經(jīng)過時,縱截距最大,最大.故選:B2、C【解析】由空間向量數(shù)量積的坐標運算求解【詳解】由已知,解得故選:C3、D【解析】將直線方程整理為,從而可得直線所過的定點.【詳解】可化為,∴直線過定點,故選:D.4、B【解析】由離心率求出雙曲線方程,由對稱性設(shè)出點A,B,D坐標,求出坐標,求出答案.【詳解】由題意得:,解得:,因為離心率,所以,,故雙曲線方程為,設(shè),則,,則,所以,則,解得:,故.故選:B5、D【解析】設(shè)橢圓的方程為,根據(jù)題意得到和,求得的值,即可求解.【詳解】由題意,橢圓的焦點在軸上,可設(shè)橢圓的方程為,因為橢圓C的離心率為,可得,又由,即,解得,又因為橢圓的面積為,可得,即,聯(lián)立方程組,解答,所以橢圓方程為.故選:D.6、C【解析】先研究四個選項中圖象的特征,再對照小明上學(xué)路上的運動特征,兩者對應(yīng)即可選出正確選項.【詳解】考查四個選項,橫坐標表示時間,縱坐標表示的是離開學(xué)校的距離,由此知,此函數(shù)圖象一定是下降的,由此排除A;再由小明騎車上學(xué),開始時勻速行駛可得出圖象開始一段是直線下降型,又途中因交通堵塞停留了一段時間,故此時有一段函數(shù)圖象與x軸平行,由此排除D,之后為了趕時間加快速度行駛,此一段時間段內(nèi)函數(shù)圖象下降的比較快,由此可確定C正確,B不正確故選C【點睛】本題考查函數(shù)的表示方法,關(guān)鍵是理解坐標系的度量與小明上學(xué)的運動特征,屬于基礎(chǔ)題.7、A【解析】根據(jù)等差數(shù)列的定義求出x,求出公差,即可求出第四項.【詳解】由題可知,等差數(shù)列公差d=(x+2)-x=2,故3x+6=x+2+2,故x=-1,故第四項為-1+(4-1)×2=5.故選:A.8、C【解析】令雙曲線右焦點為,由對稱性可知,,結(jié)合雙曲線的定義即可得出結(jié)果.【詳解】令雙曲線右焦點為,由對稱性可知,,則,為常數(shù),故選:C.9、B【解析】求出,然后可得答案.【詳解】,所以故選:B10、A【解析】由公理2的推論即可得到答案.【詳解】由公理2的推論:過一條直線和直線外一點,有且只有一個平面,可得在同一平面,故充分條件成立;由公理2的推論:過兩條平行直線,有且只有一個平面,可得,當(dāng)時,同一個平面上,但中無三點共線,故必要條件不成立;故選:A【點睛】本題考查點線面的位置關(guān)系和充分必要條件的判斷,重點考查公理2及其推論;屬于中檔題;公理2的三個推論:經(jīng)過一條直線和直線外一點,有且只有一個平面;經(jīng)過兩條平行直線,有且只有一個平面;經(jīng)過兩條相交直線,有且只有一個平面;11、A【解析】結(jié)合空間幾何體以及空間向量的線性運算即可求出結(jié)果.【詳解】因為分別為的中點,則,,,故選:A.12、D【解析】求導(dǎo),由得出.【詳解】,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)數(shù)列的通項公式可得答案.【詳解】因為,所以數(shù)列的前5項為.故答案為:14、4【解析】化簡曲線方程,得到雙曲線的一支,結(jié)合雙曲線定義求出結(jié)果【詳解】由,得,即,故為雙曲線右支上一點,且分別為該雙曲線的左、右焦點,則,.【點睛】本題考查了雙曲線的定義,解題時要先化簡曲線方程,然后再結(jié)合雙曲線定義求出結(jié)果,較為基礎(chǔ)15、【解析】根據(jù)直線方向向量求出直線斜率即可得直線方程.【詳解】因為直線l的一個方向向量為(2,1),所以其斜率,所以l方程為:,即其一般式方程為:.故答案為:.16、【解析】由兩圓公共弦方程,將兩圓方程相減得到,結(jié)合已知列方程組求、,即可得答案.【詳解】由題設(shè),兩圓方程相減可得:,即為公共弦,∴,可得,∴.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由二項式系數(shù)和公式可得答案;(2)求出的通項,利用的指數(shù)為整數(shù)可得答案.【小問1詳解】的二項展開式中所有項的二項式系數(shù)之和,所以.【小問2詳解】,因此時,有理項,有理項是第一項和第七項.18、(1)選①,,;選②,,;選③,,;(2),【解析】(1)選條件①根據(jù)等比數(shù)列列出方程求出公比得通項公式,再由等差數(shù)列列出方程求出首項與公差可得通項公式,選②③與①相同的方法求數(shù)列的通項公式;(2)根據(jù)等比數(shù)列、等差數(shù)列的求和公式解計算即可.【小問1詳解】選條件①:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為d,,,解得,,.選條件②:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,,選條件③:設(shè)等比數(shù)列的公比為,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,【小問2詳解】由(1)知,,19、(1)證明見解析(2)證明見解析【解析】(1)由題意可得,從而可證.(2)由題意可得平面,從而可得,由根據(jù)條件可得,從而可得平面,從而可得證.【小問1詳解】由分別為線段的中點.由中位線定理知,又平面,且平面,所以直線平面【小問2詳解】兩兩垂直,即,且所以平面,又平面,所以由,且分別為線段的中點,所以,因此根據(jù)線面垂直判定定理得平面,且平面所以平面平面.20、(1)證明見解析,是鱉臑,四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直線與直線,直線與平面的垂直的轉(zhuǎn)化證明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判斷DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,確定直角即可;(2)PD是陽馬P?ABCD的高,DE是鱉臑D?BCE的高,BC⊥CE,,由此能求出的值(3)根據(jù)公理2得出DG是平面DEF與平面ACBD的交線.利用直線與平面的垂直判斷出DG⊥DF,DG⊥DB,根據(jù)平面角的定義得出∠BDF是面DEF與面ABCD所成二面角的平面角,轉(zhuǎn)化到直角三角形求解即可【小問1詳解】因為PD⊥底面ABCD,所以PD⊥BC,由底面ABCD為長方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE?平面PDC,所以BC⊥DE又因為PD=CD,點E是PC的中點,所以DE⊥PC而PC∩CB=C,所以DE⊥平面PBC.而PB?平面PBC,所以PB⊥DE又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF由DE⊥平面PBC,PB⊥平面DEF,可知四面體BDEF的四個面都是直角三角形,即四面體BDEF是一個鱉臑,其四個面的直角分別為∠DEB,∠DEF,∠EFB,∠DFB;【小問2詳解】由已知,PD是陽馬P?ABCD的高,∴,由(Ⅰ)知,,在Rt△PDC中,∵PD=CD,點E是PC的中點,∴,∴【小問3詳解】如圖所示,在面BPC內(nèi),延長BC與FE交于點G,則DG是平面DEF與平面ABCD的交線由(1)知,PB⊥平面DEF,所以PB⊥DG又因為PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD所以DG⊥DF,DG⊥DB故∠BDF是面DEF與面ABCD所成二面角的平面角,設(shè)PD=DC=1,BC=λ,有,在Rt△PDB中,由DF⊥PB,得,則,解得所以故當(dāng)面DEF與面ABCD所成二面角的大小為時,21、(1),(2)【解析】(1)根據(jù)已知遞推關(guān)系式再寫一式,然后兩式相減,由等差數(shù)列、等比數(shù)列的定義即可求解;(2)根據(jù)已知遞推關(guān)系式再寫一式,然后兩式相減,求出,最后利用錯位相減法即可得答案.【小問1詳解】解:因為,,所以,,得,所以是以2為首項2為公差的等差數(shù)列,是以1為首項2為公差的等差數(shù)列,所以,,所以;因為,所以,又由得,所以是以2為首項2為公比的等比數(shù)列,所以.【小問2詳解】解:當(dāng)時,,當(dāng)時,,得,即,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論