




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省佛山市順德區(qū)2023年數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若直線與圓只有一個(gè)公共點(diǎn),則m的值為()A. B.C. D.2.設(shè)等差數(shù)列,的前n項(xiàng)和分別是,,若,則()A. B.C. D.3.已知等差數(shù)列的前項(xiàng)和為,,,則()A. B.C. D.4.已知直線與圓相交于兩點(diǎn),當(dāng)?shù)拿娣e最大時(shí),的值是()A. B.C. D.5.函數(shù),的值域?yàn)椋ǎ〢. B.C. D.6.已知函數(shù),,若對(duì)于任意的,存在唯一的,使得,則實(shí)數(shù)a的取值范圍是()A(e,4) B.(e,4]C.(e,4) D.(,4]7.已知為等差數(shù)列,且,,則()A. B.C. D.8.已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則拋物線的準(zhǔn)線方程為()A. B.C. D.9.定義“等方差數(shù)列”:如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)的平方與它的前一項(xiàng)的平方的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫作等方差數(shù)列,這個(gè)常數(shù)叫作該數(shù)列的方公差.設(shè)是由正數(shù)組成的等方差數(shù)列,且方公差為4,,則數(shù)列的前24項(xiàng)和為()A. B.3C. D.610.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過(guò)樣本點(diǎn)的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg11.設(shè)雙曲線的離心率為,則下列命題中是真命題的為()A.越大,雙曲線開(kāi)口越小 B.越小,雙曲線開(kāi)口越大C.越大,雙曲線開(kāi)口越大 D.越小,雙曲線開(kāi)口越大12.已知某班有學(xué)生48人,為了解該班學(xué)生視力情況,現(xiàn)將所有學(xué)生隨機(jī)編號(hào),用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本已知3號(hào),15號(hào),39號(hào)學(xué)生在樣本中,則樣本中另外一個(gè)學(xué)生的編號(hào)是()A.26 B.27C.28 D.29二、填空題:本題共4小題,每小題5分,共20分。13.生活中有這樣的經(jīng)驗(yàn):三腳架在不平的地面上也可以穩(wěn)固地支撐一部照相機(jī).這個(gè)經(jīng)驗(yàn)用我們所學(xué)的數(shù)學(xué)公理可以表述為_(kāi)__________.14.橢圓的右焦點(diǎn)為,過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn)、,則的面積的最大值為_(kāi)__________.15.在長(zhǎng)方體中,若,,則異面直線與所成角的大小為_(kāi)_____.16.若在上是減函數(shù),則實(shí)數(shù)a的取值范圍是_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐中,平面,∥,,,為上一點(diǎn),平面(Ⅰ)求證:∥平面;(Ⅱ)若,求點(diǎn)D到平面EMC的距離18.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)在第一象限且為拋物線上一點(diǎn),點(diǎn)在點(diǎn)右側(cè),且△恰為等邊三角形(1)求拋物線的方程;(2)若直線與交于兩點(diǎn),向量的夾角為(其中為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.19.(12分)已知橢圓:的離心率為,且經(jīng)過(guò)點(diǎn).(1)求的方程;(2)設(shè)的右焦點(diǎn)為F,過(guò)F作兩條互相垂直的直線AB和DE,其中A,B,D,E都在橢圓上,求的取值范圍.20.(12分)已知拋物線C:y2=2px(p>0)的焦點(diǎn)與橢圓M:=1的右焦點(diǎn)重合.(1)求拋物線C的方程;(2)直線y=x+m與拋物線C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)m為何值時(shí),=0.21.(12分)已知橢圓左,右頂點(diǎn)分別是,,且,是橢圓上異于,的不同的兩點(diǎn)(1)若,證明:直線必過(guò)坐標(biāo)原點(diǎn);(2)設(shè)點(diǎn)是以為直徑的圓和以為直徑的圓的另一個(gè)交點(diǎn),記線段的中點(diǎn)為,若,求動(dòng)點(diǎn)的軌跡方程22.(10分)已知拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,雙曲線E的漸近線方程為(1)求拋物線C的標(biāo)準(zhǔn)方程和雙曲線E的標(biāo)準(zhǔn)方程;(2)若O是坐標(biāo)原點(diǎn),直線與拋物線C交于A,B兩點(diǎn),求的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用圓心到直線的距離等于半徑列方程,化簡(jiǎn)求得的值.【詳解】圓的圓心為,半徑為,直線與圓只有一個(gè)公共點(diǎn),所以直線與圓相切,所以.故選:D2、B【解析】利用求解.【詳解】解:因?yàn)榈炔顢?shù)列,的前n項(xiàng)和分別是,所以.故選:B3、C【解析】利用已知條件求得,由此求得.【詳解】依題意,解得,所以.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式,屬于基礎(chǔ)題.4、C【解析】利用點(diǎn)到直線的距離公式和弦長(zhǎng)公式可以求出的面積是關(guān)于的一個(gè)式子,即可求出答案.【詳解】圓心到直線的距離,弦長(zhǎng)為..當(dāng),即時(shí),取得最大值.故選:C.5、A【解析】利用基本不等式可得,進(jìn)而可得,即求.【詳解】∵,∴,當(dāng)且僅當(dāng),即時(shí)取等號(hào),∴,,∴.故選:A.6、B【解析】結(jié)合導(dǎo)數(shù)和二次函數(shù)的性質(zhì)可求出和的值域,結(jié)合已知條件可得,,從而可求出實(shí)數(shù)a的取值范圍.【詳解】解:g(x)=x2ex的導(dǎo)函數(shù)為g′(x)=2xex+x2ex=x(x+2)ex,當(dāng)時(shí),,由時(shí),,時(shí),,可得g(x)在[–1,0]上單調(diào)遞減,在(0,1]上單調(diào)遞增,故g(x)在[–1,1]上的最小值為g(0)=0,最大值為g(1)=e,所以對(duì)于任意的,.因?yàn)殚_(kāi)口向下,對(duì)稱(chēng)軸為軸,又,所以當(dāng)時(shí),,當(dāng)時(shí),,則函數(shù)在[,2]上的值域?yàn)閇a–4,a],且函數(shù)f(x)在,圖象關(guān)于軸對(duì)稱(chēng),在(,2]上,函數(shù)單調(diào)遞減.由題意,得,,可得a–4≤0<e<,解得ea≤4故選:B【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的最值,考查了二次函數(shù)的性質(zhì),屬于中檔題.本題的難點(diǎn)是這一條件的轉(zhuǎn)化.7、B【解析】由已知條件求出等差數(shù)列的公差,從而可求出【詳解】設(shè)等差數(shù)列的公差為,由,,得,解得,所以,故選:B8、C【解析】先求出橢圓的右焦點(diǎn),從而可求拋物線的準(zhǔn)線方程.【詳解】,橢圓右焦點(diǎn)坐標(biāo)為,故拋物線的準(zhǔn)線方程為,故選:C.【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),一般地,如果拋物線的方程為,則拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線方程為,本題屬于基礎(chǔ)題.9、C【解析】根據(jù)等方差數(shù)列的定義,結(jié)合等差數(shù)列的通項(xiàng)公式,運(yùn)用裂項(xiàng)相消法進(jìn)行求解即可.【詳解】因?yàn)槭欠焦顬?的等方差數(shù)列,所以,,∴,∴,∴,故選:C10、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過(guò)樣本點(diǎn)的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測(cè)其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測(cè)其體重約為0.85×170﹣85.71=58.79kg,D錯(cuò)誤故選D11、C【解析】根據(jù)雙曲線的性質(zhì)結(jié)合離心率對(duì)雙曲線開(kāi)口大小的影響即可得解.【詳解】解:對(duì)于A,越大,雙曲線開(kāi)口越大,故A錯(cuò)誤;對(duì)于B,越小,雙曲線開(kāi)口越小,故B錯(cuò)誤;對(duì)于C,由,越大,則越大,雙曲線開(kāi)口越大,故C正確;對(duì)于D,越小,則越小,雙曲線開(kāi)口越小,故D錯(cuò)誤.故選:C.12、B【解析】由系統(tǒng)抽樣可知抽取一個(gè)容量為4的樣本時(shí),將48人按順序平均分為4組,由已知編號(hào)可得所求的學(xué)生來(lái)自第三組,設(shè)其編號(hào)為,則,進(jìn)而求解即可【詳解】由系統(tǒng)抽樣可知,抽取一個(gè)容量為4的樣本時(shí),將48人分為4組,第一組編號(hào)為1號(hào)至12號(hào);第二組編號(hào)為13號(hào)至24號(hào);第三組編號(hào)為25號(hào)至36號(hào);第四組編號(hào)為37號(hào)至48號(hào),故所求的學(xué)生來(lái)自第三組,設(shè)其編號(hào)為,則,所以,故選:B【點(diǎn)睛】本題考查系統(tǒng)抽樣的編號(hào),屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13、不在同一直線上的三點(diǎn)確定一個(gè)平面【解析】根據(jù)題意結(jié)合平面公理2即可得出答案.【詳解】解:根據(jù)題意可知,三腳架與地面接觸的三個(gè)點(diǎn)不在同一直線上,則為數(shù)學(xué)中的平面公理2:不在同一直線上的三點(diǎn)確定一個(gè)平面.故答案為:不在同一直線上的三點(diǎn)確定一個(gè)平面.14、【解析】分析可知點(diǎn)、關(guān)于原點(diǎn)對(duì)稱(chēng),可知當(dāng)、為橢圓短軸的端點(diǎn)時(shí),的面積取得最大值.【詳解】橢圓中,,,則,則,由題意可知,、關(guān)于原點(diǎn)對(duì)稱(chēng),當(dāng)、為橢圓短軸的端點(diǎn)時(shí),的面積取得最大值,且最大值為.故答案為:.15、【解析】畫(huà)出長(zhǎng)方體,再將異面直線與利用平行線轉(zhuǎn)移到一個(gè)三角形內(nèi)求解角度即可.【詳解】畫(huà)出長(zhǎng)方體可得異面直線與所成角為與之間的夾角,連接.則因?yàn)?則,又,故,又,故為等腰直角三角形,故,即異面直線與所成角的大小為故答案為【點(diǎn)睛】本題主要考查立體幾何中異面直線的角度問(wèn)題,一般的處理方法是將異面直線經(jīng)過(guò)平行線的轉(zhuǎn)換構(gòu)成三角形求角度,屬于基礎(chǔ)題型.16、【解析】根據(jù)導(dǎo)數(shù)的性質(zhì),結(jié)合常變量分離法進(jìn)行求解即可.【詳解】,因?yàn)樵谏鲜菧p函數(shù),所以在上恒成立,即,當(dāng)時(shí),的最小值為,所以,故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)證明見(jiàn)解析;(Ⅱ)【解析】(Ⅰ)運(yùn)用線面平行的判定定理證明;(Ⅱ)借助體積相等建立方程求解即可【詳解】(Ⅰ)證明:取的中點(diǎn),連接,因?yàn)?,所以,又因?yàn)槠矫?,所以,所以平面,因?yàn)槠矫妫浴?,面,平?所以∥平面;(Ⅱ)因?yàn)槠矫妫妫云矫嫫矫?,平面平?過(guò)點(diǎn)作直線,則平面,由已知平面,∥,,可得,又,所以為的中點(diǎn),在中,,在中,,,在中,,由等面積法知,所以,即點(diǎn)D到平面EMC的距離為.考點(diǎn):直線與平面的位置關(guān)系及運(yùn)用【易錯(cuò)點(diǎn)晴】本題考查的是空間的直線與平面平行的推證問(wèn)題和點(diǎn)到直線的距離問(wèn)題.解答時(shí),證明問(wèn)題務(wù)必要依據(jù)判定定理,因此線面的平行問(wèn)題一定要在所給的平面中找出一條直線與這個(gè)平面外的直線平行,敘述時(shí)一定要交代面外的線和面內(nèi)的線,這是許多學(xué)生容易忽視的問(wèn)題,也高考閱卷時(shí)最容易扣分的地方,因此在表達(dá)時(shí)一定要引起注意18、(1)(2)【解析】(1)根據(jù)△恰為等邊三角形由題意知:得到,再利用拋物線的定義求解;(2)聯(lián)立,結(jié)合韋達(dá)定理,根據(jù)的夾角為,由求解.【小問(wèn)1詳解】解:由題意知:,由拋物線的定義知:,由,解得,所以拋物線方程為;【小問(wèn)2詳解】設(shè),由,得,則,,則,,因?yàn)橄蛄康膴A角為,所以,,則,且,所以,解得,所以實(shí)數(shù)的取值范圍.19、(1)(2)【解析】(1)根據(jù)橢圓的離心率為,及經(jīng)過(guò)點(diǎn)建立等式可求解;(2)分斜率存在與不存在兩種情況進(jìn)行討論,當(dāng)斜率存在時(shí),計(jì)算與后再求范圍即可.【小問(wèn)1詳解】由題意知的離心率為,整理得,又因?yàn)榻?jīng)過(guò)點(diǎn),所以,解得,所以,因此,的方程為.小問(wèn)2詳解】由已知可得,當(dāng)直線AB或DE有一條的斜率不存在時(shí),可得,或,,此時(shí)有或.當(dāng)AB和DE的斜率都存在時(shí)且不為0時(shí),設(shè)直線:,直線:,,,,由得,所以,,所以,用替換可得.所以,綜上所述,的取值范圍為.20、(1)y2=4x(2)m=﹣4或m=0【解析】(1)由橢圓的右焦點(diǎn)得出的值,進(jìn)而得出拋物線C的方程;(2)聯(lián)立直線和拋物線方程,利用韋達(dá)定理結(jié)合數(shù)量積公式證明即可【小問(wèn)1詳解】由題意,橢圓=1的右焦點(diǎn)為(1,0),拋物線y2=2px的焦點(diǎn)為(,0),所以,解得p=2,所以拋物線的方程為y2=4x;【小問(wèn)2詳解】因?yàn)橹本€y=x+m與拋物線C交于A,B兩點(diǎn),設(shè)A(x1,y1),B(x2,y2),聯(lián)立方程組,可得x2+2(m﹣2)x+m2=0,由Δ=4(m﹣2)2﹣4m2>0,解得m<1,所以x1+x2=﹣2m+4,x1x2=m2,又因?yàn)椋郑剑▁1,y1),=(x2,y2),可得x1x2+y1y2=x1x2+(x1+m)(x2+m)=2x1x2+m(x1+x2)+m2=m2+4m=0,解得m=﹣4<1或m=0<1,故m=﹣4或m=0.21、(1)證明見(jiàn)解析;(2).【解析】(1)設(shè),首先證明,從而可得到,即得到;進(jìn)而可得到四邊形為平行四邊形;再根據(jù)為的中點(diǎn),即可證明直線必過(guò)坐標(biāo)原點(diǎn)(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,消元,寫(xiě)韋達(dá);根據(jù)條件可求出直線MN過(guò)定點(diǎn),從而可得到過(guò)定點(diǎn),進(jìn)而可得到點(diǎn)在以為直徑的圓上運(yùn)動(dòng),從而可求出動(dòng)點(diǎn)的軌跡方程【小問(wèn)1詳解】設(shè),則,即因?yàn)椋?,所以因?yàn)椋?,所?同理可證.因?yàn)?,,所以四邊形為平行四邊形,因?yàn)闉榈闹悬c(diǎn),所以直線必過(guò)坐標(biāo)原點(diǎn)【小問(wèn)2詳解】當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,,聯(lián)立,整理得,則,,.因?yàn)椋?,因?yàn)椋獾没?當(dāng)時(shí),直線的方程為過(guò)點(diǎn)A,不滿足題意,所以舍去;所以直線的方程為,所以直線過(guò)定點(diǎn).當(dāng)直線的斜率不存在時(shí),因?yàn)?,所以直線的方程為,經(jīng)驗(yàn)證,符合題意.故直線過(guò)定點(diǎn).因
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《人民英雄永垂不朽》
- 2025教師資格考試初中數(shù)學(xué)標(biāo)準(zhǔn)預(yù)測(cè)試卷答案及解析6-10
- 中職高一《獸醫(yī)基礎(chǔ)》2024-2025學(xué)年下學(xué)期期中考試試卷(含答案)
- 2025中介貿(mào)易合同范本
- 研學(xué)旅行導(dǎo)師培訓(xùn)大綱
- 2025鞋店租賃合同樣本
- 稅貸借款合同范本
- 2025土地承包權(quán)轉(zhuǎn)讓合同樣本
- 酒店安全形勢(shì)分析會(huì)
- 2025年商業(yè)店鋪裝修合同范本
- 世界投資報(bào)告2024 (概述)- 投資便利化和數(shù)字政務(wù)
- 2024年三級(jí)直播銷(xiāo)售員(高級(jí))職業(yè)技能鑒定考試復(fù)習(xí)題庫(kù)(含答案)
- 2024-2030年中國(guó)高壓泵行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- 青海省勞動(dòng)合同范本「標(biāo)準(zhǔn)版」
- 回歸以人為本 課件-2024-2025學(xué)年高中美術(shù)人教版 (2019) 選擇性必修4 設(shè)計(jì)
- 安徽省合肥市一中、六中、八中2025屆高三下學(xué)期一??荚嚿镌囶}含解析
- SL+303-2017水利水電工程施工組織設(shè)計(jì)規(guī)范
- 2024年全國(guó)中學(xué)生生物學(xué)聯(lián)賽試題
- 國(guó)企外聘合同范本
- 2024年第九屆“鵬程杯”六年級(jí)語(yǔ)文邀請(qǐng)賽試卷(復(fù)賽)
- 人教版高中化學(xué)必修二《第一節(jié) 硫及其化合物》同步練習(xí)及答案解析
評(píng)論
0/150
提交評(píng)論