河南省洛陽市名校2023年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第1頁
河南省洛陽市名校2023年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第2頁
河南省洛陽市名校2023年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第3頁
河南省洛陽市名校2023年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第4頁
河南省洛陽市名校2023年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省洛陽市名校2023年高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在平行六面體中,M為與的交點(diǎn),若,,,則下列向量中與相等的向量是()A. B.C. D.2.已知:,:,若是的充分不必要條件,則實(shí)數(shù)的取值范圍是()A. B.C. D.3.已知集合,則()A. B.C. D.4.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件5.已知,若,則的取值范圍為()A. B.C. D.6.已知過拋物線焦點(diǎn)的直線交拋物線于,兩點(diǎn),則的最小值為()A. B.2C. D.37.若正方體ABCD-A1B1C1D1的棱長為1,則直線A1C1到平面ACD1的距離為()A.1 B.C. D.8.已知的二項(xiàng)展開式的各項(xiàng)系數(shù)和為32,則二項(xiàng)展開式中的系數(shù)為A5 B.10C.20 D.409.第屆全運(yùn)會(huì)于年月在陜西西安順利舉辦,其中水上項(xiàng)目在西安奧體中心游泳跳水館進(jìn)行,為了應(yīng)對(duì)比賽,大會(huì)組委會(huì)將對(duì)泳池進(jìn)行檢修,已知泳池深度為,其容積為,如果池底每平方米的維修費(fèi)用為元,設(shè)入水處的較短池壁長度為,且據(jù)估計(jì)較短的池壁維修費(fèi)用與池壁長度成正比,且比例系數(shù)為,較長的池壁維修費(fèi)用滿足代數(shù)式,則當(dāng)泳池的維修費(fèi)用最低時(shí)值為()A. B.C. D.10.如圖,將邊長為4的正方形折成一個(gè)正四棱柱的側(cè)面,則異面直線AK和LM所成角的大小為()A.30° B.45°C.60° D.90°11.過點(diǎn)且平行于直線的直線方程為()A. B.C. D.12.已知直線過點(diǎn),且與直線垂直,則直線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點(diǎn)坐標(biāo)為__________14.已知拋物線的焦點(diǎn)為,定點(diǎn),若直線與拋物線相交于、兩點(diǎn)(點(diǎn)在、中間),且與拋物線的準(zhǔn)線交于點(diǎn),若,則的長為______.15.若數(shù)列滿足,,設(shè),類比課本中推導(dǎo)等比數(shù)列前項(xiàng)和公式的方法,可求得______________16.半徑為的球的體積為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè){an}是公比為正數(shù)的等比數(shù)列a1=2,a3=a2+4(Ⅰ)求{an}的通項(xiàng)公式;(Ⅱ)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項(xiàng)和Sn18.(12分)已知數(shù)列{}的首項(xiàng)=2,(n≥2,),,.(1)證明:{+1}為等比數(shù)列;(2)設(shè)數(shù)列{}的前n項(xiàng)和,求證:.19.(12分)在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且(1)求證:平面;(2)求平面與平面夾角的余弦值20.(12分)已知數(shù)列是等差數(shù)列,為其前n項(xiàng)和,,(1)求的通項(xiàng)公式;(2)若,求證:為等比數(shù)列21.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓E:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為.點(diǎn)P是橢圓上的一動(dòng)點(diǎn),且P在第一象限.記的面積為S,當(dāng)時(shí),.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點(diǎn)M,N,記和的面積分別為S1和S2.(i)求證:存在常數(shù)λ,使得成立;(ii)求S2-S1的最大值.22.(10分)如圖,直四棱柱的底面是菱形,,,直線與平面ABCD所成角的正弦值為.E,F(xiàn)分別為、的中點(diǎn).(1)求證:平面BED;(2)求直線與平面FAC所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】利用空間向量的三角形法則可得,結(jié)合平行六面體的性質(zhì)分析解答【詳解】平行六面體中,M為與的交點(diǎn),,,,則有:,所以.故選:A2、C【解析】由是的充分不必要條件,則是的充分不必要條件,再根據(jù)對(duì)應(yīng)集合的包含關(guān)系可得答案.【詳解】由,即,設(shè),由是的充分不必要條件,則是的充分不必要條件所以,則故選:C3、D【解析】由集合的關(guān)系及交集運(yùn)算,逐項(xiàng)判斷即可得解.【詳解】因?yàn)榧?,,所以,?故選:D.【點(diǎn)睛】本題考查了集合關(guān)系的判斷及集合的交集運(yùn)算,考查了運(yùn)算求解能力,屬于基礎(chǔ)題.4、A【解析】根據(jù)直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.5、C【解析】根據(jù)題意,由為原點(diǎn)到直線上點(diǎn)的距離的平方,再根據(jù)點(diǎn)到直線垂線段最短,即可求得范圍.【詳解】由,,視為原點(diǎn)到直線上點(diǎn)的距離的平方,根據(jù)點(diǎn)到直線垂線段最短,可得,所有的取值范圍為,故選:C.6、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達(dá)定理,求得,利用拋物線定義,將目標(biāo)式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn)的坐標(biāo)為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標(biāo)為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當(dāng)且僅當(dāng),即時(shí)取得最小值.故選:D.【點(diǎn)睛】本題考察拋物線中的最值問題,涉及到韋達(dá)定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標(biāo)式,是解決問題的關(guān)鍵.7、B【解析】先證明點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離,再建立空間直角坐標(biāo)系,利用向量法求解.【詳解】因?yàn)槠矫嫫矫妫訟1C1//平面ACD1,則點(diǎn)A1到平面ACD1的距離即為直線A1C1到平面ACD1的距離.建立如圖所示的空間直角坐標(biāo)系,易知=(0,0,1),由題得平面,所以平面,所以,同理,因?yàn)槠矫妫云矫?,所以是平面一個(gè)法向量,所以平面ACD1的一個(gè)法向量為=(1,1,1),故所求的距離為.故選:B【點(diǎn)睛】方法點(diǎn)睛:求點(diǎn)到平面的距離常用的方法有:(1)幾何法(找作證指求);(2)向量法;(3)等體積法.要根據(jù)已知條件靈活選擇方法求解.8、B【解析】首先根據(jù)二項(xiàng)展開式的各項(xiàng)系數(shù)和,求得,再根據(jù)二項(xiàng)展開式的通項(xiàng)為,求得,再求二項(xiàng)展開式中的系數(shù).【詳解】因?yàn)槎?xiàng)展開式的各項(xiàng)系數(shù)和,所以,又二項(xiàng)展開式的通項(xiàng)為=,,所以二項(xiàng)展開式中的系數(shù)為.答案選擇B【點(diǎn)睛】本題考查二項(xiàng)式展開系數(shù)、通項(xiàng)等公式,屬于基礎(chǔ)題9、A【解析】根據(jù)題意得到泳池維修費(fèi)用的的解析式,再利用導(dǎo)數(shù)求出最值即可【詳解】解:設(shè)泳池維修的總費(fèi)用為元,則由題意得,則,令,解得,當(dāng)時(shí),;當(dāng)時(shí),,故當(dāng)時(shí),有最小值因此,當(dāng)較短池壁為時(shí),泳池的總維修費(fèi)用最低故選A10、D【解析】作出折疊后的正四棱錐,確定線面關(guān)系,從而把異面直線的夾角通過平移放到一個(gè)平面內(nèi)求得.【詳解】由題知,折疊后的正四棱錐如圖所示,易知K為的四等分點(diǎn),L為的中點(diǎn),M為的四等分點(diǎn),,取的中點(diǎn)N,易證,則異面直線AK和LM所成角即直線AK和KN所成角,在中,,,故故選:D11、A【解析】設(shè)直線的方程為,代入點(diǎn)的坐標(biāo)即得解.【詳解】解:設(shè)直線的方程為,把點(diǎn)坐標(biāo)代入直線方程得.所以所求的直線方程為.故選:A12、D【解析】由題意設(shè)直線方程為,然后將點(diǎn)坐標(biāo)代入求出,從而可求出直線方程【詳解】因?yàn)橹本€與直線垂直,所以設(shè)直線方程為,因?yàn)橹本€過點(diǎn),所以,得,所以直線方程為,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】化成標(biāo)準(zhǔn)形式,結(jié)合焦點(diǎn)定義即可求解.【詳解】由,得,故拋物線的焦點(diǎn)坐標(biāo)為故答案為:14、【解析】分別過點(diǎn)、作、垂直于拋物線的準(zhǔn)線于、,則,求出直線的方程,可求得拋物線的焦點(diǎn)的坐標(biāo),可得出拋物線的標(biāo)準(zhǔn)方程,再將直線的方程與拋物線的方程聯(lián)立,求出點(diǎn)的縱坐標(biāo),利用拋物線的定義可求得線段的長.【詳解】如圖,分別過點(diǎn)、作、垂直于拋物線的準(zhǔn)線于、,則,由得,所以,,又,所以,直線的方程為,所以,,則,則拋物線的方程為,設(shè)點(diǎn)的縱坐標(biāo)為,由,得或,因?yàn)辄c(diǎn)在、之間,則,所以,.故答案為:.15、n【解析】先對(duì)兩邊同乘以4,再相加,化簡整理即可得出結(jié)果.【詳解】由①得:②所以①②得:,所以,,故答案為【點(diǎn)睛】本題主要考查類比推理的思想,結(jié)合錯(cuò)位相減法思想即可求解,屬于基礎(chǔ)題型.16、【解析】根據(jù)球的體積公式求解【詳解】根據(jù)球的體積公式【點(diǎn)睛】球的體積公式三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)an=2×2n﹣1=2n(Ⅱ)2n﹣12n+1﹣2+n2=2n+1+n2﹣2【解析】(Ⅰ)由{an}是公比為正數(shù)的等比數(shù)列,設(shè)其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通項(xiàng)公式(Ⅱ)由{bn}是首項(xiàng)為1,公差為2的等差數(shù)列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比數(shù)列與等差數(shù)列的前n項(xiàng)和公式即可求得數(shù)列{an+bn}的前n項(xiàng)和Sn解:(Ⅰ)∵設(shè){an}是公比為正數(shù)的等比數(shù)列∴設(shè)其公比為q,q>0∵a3=a2+4,a1=2∴2×q2="2×q+4"解得q=2或q=﹣1∵q>0∴q="2"∴{an}的通項(xiàng)公式為an=2×2n﹣1=2n(Ⅱ)∵{bn}是首項(xiàng)為1,公差為2的等差數(shù)列∴bn=1+(n﹣1)×2=2n﹣1∴數(shù)列{an+bn}的前n項(xiàng)和Sn=+=2n+1﹣2+n2=2n+1+n2﹣2點(diǎn)評(píng):本題考查了等比數(shù)列的通項(xiàng)公式及數(shù)列的求和,注意題目條件的應(yīng)用.在用等比數(shù)列的前n項(xiàng)和公式時(shí)注意辨析q是否為1,只要簡單數(shù)字運(yùn)算時(shí)不出錯(cuò),問題可解,是個(gè)基礎(chǔ)題18、(1)證明見解析(2)證明見解析【解析】(1)利用已知條件證明為常數(shù)即可;(2)求出和通項(xiàng)公式,再求出通項(xiàng)公式,利用裂項(xiàng)相消法可求,判斷的單調(diào)性即可求其范圍.【小問1詳解】∵=2,(n≥2,),∴當(dāng)n≥2時(shí),(常數(shù)),∴數(shù)列{+1}是公比為3的等比數(shù)列;【小問2詳解】由(1)知,數(shù)列{+1}是以3為首項(xiàng),以3為公比的等比數(shù)列,∴,∴,∴∵,∴∴,∴∴.當(dāng)n≥2時(shí),∴{}為遞增數(shù)列,故的最小值為,∴.19、(1)證明見解析(2)【解析】(1)先利用正方形和梯形的性質(zhì)證明線面平行,然后再根據(jù)線面平行證明面面平行即可(2)根據(jù)題意建立空間直角坐標(biāo)系,寫出相關(guān)點(diǎn)的坐標(biāo)和相關(guān)的向量,然后分別求出平面與平面的一個(gè)法向量,最后求出平面與平面夾角的余弦值【小問1詳解】四邊形是正方形,可得:又平面,平面則有:平面四邊形是梯形,可得:又平面,平面則有:平面又故平面平面【小問2詳解】依題意知兩兩垂直,故以為原點(diǎn),所在的直線分別為軸、軸、軸,建立如圖所示的空間直角坐標(biāo)系.則有:,,,可得:,,設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面的一個(gè)法向量,則有:取,可得:設(shè)平面與平面的夾角為,則故平面與平面夾角的余弦值為20、(1)(2)證明見解析【解析】(1)由已知條件列出關(guān)于的方程組,解方程組求出,從而可求出的通項(xiàng)公式,(2)由(1)可得,然后利用等比數(shù)列的定義證明即可【小問1詳解】設(shè)數(shù)列的公差為,則由,,得,解得,所以【小問2詳解】證明:由(1)得,所以,()所以數(shù)列是以9為公比,27為首項(xiàng)的等比數(shù)列21、(1)(2)(i)存在常數(shù),使得成立;(ii)的最大值為.【解析】(1)求點(diǎn)P的坐標(biāo),再利用面積和離心率,可以求出,然后就可以得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)的坐標(biāo)和直線方程,聯(lián)立方程,解出的y坐標(biāo)值與P的坐標(biāo)之間的關(guān)系,求以焦距為底邊的三角形面積;利用均值定理當(dāng)且僅當(dāng)時(shí)取等號(hào),求最大值.【小問1詳解】先求第一象限P點(diǎn)坐標(biāo):,所以P點(diǎn)的坐標(biāo)為,所以,所以橢圓E的方程為【小問2詳解】設(shè),易知直線和直線的坐標(biāo)均不為零,因?yàn)椋栽O(shè)直線的方程為,直線的方程為,由所以,因?yàn)椋?,所以所以同理由所以,因?yàn)?,,所以所以,因?yàn)?,?i)所以所以存在常數(shù),使得成立.(ii),當(dāng)且僅當(dāng),時(shí)取等號(hào),所以的最大值為.22、(1)證明見解析(2)【解析】(1)證明垂直于平面BED內(nèi)的兩條相交直線,即可得到答案;(2)分別以O(shè)B,OC,OE為x軸

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論