河南省重點高中2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
河南省重點高中2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
河南省重點高中2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
河南省重點高中2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
河南省重點高中2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省重點高中2023年數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若圓C與直線:和:都相切,且圓心在y軸上,則圓C的方程為()A. B.C. D.2.經(jīng)過直線與直線的交點,且平行于直線的直線方程為()A. B.C. D.3.若命題“或”與命題“非”都是真命題,則A.命題與命題都是真命題B.命題與命題都是假命題C.命題是真命題,命題是假命題D.命題是假命題,命題是真命題4.正三棱錐的側(cè)面都是直角三角形,,分別是,的中點,則與平面所成角的余弦值為()A. B.C. D.5.在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,點E是棱PC的中點,作,交PB于F.下面結(jié)論正確的個數(shù)為()①∥平面EDB;②平面EFD;③直線DE與PA所成角為60°;④點B到平面PAC的距離為.A.1 B.2C.3 D.46.埃及胡夫金字塔是古代世界建筑奇跡之一,它的形狀可視為一個正四棱錐,以該四棱錐的高為邊長的正方形面積等于該四棱錐一個側(cè)面三角形的面積,則其側(cè)面三角形底邊上的高與底面正方形的邊長的比值為()A. B.C. D.7.在等比數(shù)列{an}中,a1=8,a4=64,則a3等于()A.16 B.16或-16C.32 D.32或-328.在某次賽車中,名參賽選手的成績(單位:)全部介于到之間(包括和),將比賽成績分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績在內(nèi)的選手可獲獎,則這名選手中獲獎的人數(shù)為A. B.C. D.9.已知圓與圓,則兩圓的位置關(guān)系是()A.外切 B.內(nèi)切C.相交 D.相離10.已知函數(shù),在定義域內(nèi)任取一點,則使的概率是()A. B.C. D.11.已知拋物線的焦點為,過點的直線交拋物線于,兩點,則的取值范圍是()A. B.C. D.12.函數(shù),則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與雙曲線交于兩點,則該雙曲線的離心率的取值范圍是______14.中國古代《易經(jīng)》一書中記載,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩計數(shù)”,如圖,一位古人在從右到左依次排列的紅繩子上打結(jié),滿三進一,用來記錄每年進的錢數(shù).由圖可得,這位古人一年的收入的錢數(shù)為___________.15.曲線在處的切線方程是________.16.已知曲線在點處的切線的斜率為,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓上頂點與橢圓的左,右頂點連線的斜率之積為(1)求橢圓C的離心率;(2)若直線與橢圓C相交于A,B兩點,,求橢圓C的標(biāo)準(zhǔn)方程18.(12分)已知圓C的圓心在直線上,且過點,(1)求圓C的方程;(2)過點作圓C的切線,求切線的方程19.(12分)如圖,在正方體中,分別為,的中點(1)求證:平面平面;(2)求平面與平面所成銳二面角的余弦值20.(12分)同時拋擲兩顆骰子,觀察向上點數(shù).(1)試表示“出現(xiàn)兩個1點”這個事件相應(yīng)的樣本空間的子集;(2)求出現(xiàn)兩個1點”的概率;(3)求“點數(shù)之和為7”的概率.21.(12分)如圖,OP為圓錐的高,AB為底面圓O的直徑,C為圓O上一點,并且,E為劣弧上的一點,且,.(1)若E為劣弧的中點,求證:平面POE;(2)若E為劣弧的三等分點(靠近點),求平面PEO與平面PEB的夾角的余弦值.22.(10分)在中,角A,B,C所對的邊分別為a,b,c,且.(1)求角A的大??;(2)若,且的面積為,求的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】首先求出兩平行直線間的距離,即可求出圓的半徑,設(shè)圓心坐標(biāo)為,,利用圓心到直線的距離等于半徑得到方程,求出的值,即可得解;【詳解】解:因為直線:和:的距離,由圓C與直線:和:都相切,所以圓的半徑為,又圓心在軸上,設(shè)圓心坐標(biāo)為,,所以圓心到直線的距離等于半徑,即,所以或(舍去),所以圓心坐標(biāo)為,故圓的方程為;故選:B2、B【解析】求出兩直線的交點坐標(biāo),可設(shè)所求直線的方程為,將交點坐標(biāo)代入求得,即可的解.【詳解】解:由,解得,即兩直線的交點坐標(biāo)為,設(shè)所求直線的方程為,則有,解得,所以所求直線方程為,即.故選:B.3、D【解析】因為非p為真命題,所以p為假命題,又p或q為真命題,所以q為真命題,選D.4、C【解析】以P為原點,PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,利用向量法能求出PB與平面PEF所成角的正弦值.【詳解】∵正三棱錐的側(cè)面都是直角三角形,E,F(xiàn)分別是AB,BC的中點,∴以P為原點,PA為x軸,PB為y軸,PC為z軸,建立空間直角坐標(biāo)系,設(shè),則,,,,,,,,設(shè)平面PEF的法向量,則,取,得,設(shè)PB與平面PEF所成角為,則,∴PB與平面PEF所成角的正弦值為.故選:C.5、D【解析】①由題意連接交于,連接,則是中位線,證出,由線面平行的判定定理知∥平面;②由底面,得,再由證出平面,即得,再由是正方形證出平面,則有,再由條件證出平面;③根據(jù)邊長證明△DEO是等邊三角形即可;④根據(jù)等體積法即可求.【詳解】①如圖所示,連接交于點,連接底面是正方形,點是的中點在中,是中位線,而平面且平面,∥平面;故①正確;②如圖所示,底面,且平面,,,是等腰直角三角形,又是斜邊的中線,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正確;③如圖所示,連接AC交BD與O,連接OE,由OE是三角形PAC中位線知OE∥PA,故∠DEO為異面直線PA和DE所成角或其補角,由②可知DE=,OD=,OE=,∴△DEO是等邊三角形,∴∠DEO=60°,故③正確;④如圖所示,設(shè)B到平面PAC的距離為d,由題可知PA=AC=PC=,故,由.故④正確.故正確的有:①②③④,正確的個數(shù)為4.故選:D.6、C【解析】設(shè),利用得到關(guān)于的方程,解方程即可得到答案.【詳解】如圖,設(shè),則,由題意,即,化簡得,解得(負值舍去).故選:C【點晴】本題主要考查正四棱錐的概念及其有關(guān)計算,考查學(xué)生的數(shù)學(xué)計算能力,是一道容易題.7、C【解析】首先根據(jù)a4=a1q3,求得q=2,再由a3=即可得解.【詳解】由a4=a1q3,得q3=8,即q=2,所以a3==32.故選:C8、A【解析】先根據(jù)頻率分布直方圖確定成績在內(nèi)的頻率,進而可求出結(jié)果.【詳解】由題意可得:成績在內(nèi)的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎的人數(shù)為.故選A【點睛】本題主要考查頻率分布直方圖,會根據(jù)頻率分布直方圖求頻率即可,屬于??碱}型.9、A【解析】求得兩圓的圓心和半徑,再根據(jù)圓心距與半徑之和半徑之差的關(guān)系,即可判斷位置關(guān)系.【詳解】對圓,其圓心,半徑;對圓,其圓心,半徑;又,故兩圓外切.故選:A.10、A【解析】解不等式,根據(jù)與長度有關(guān)的幾何概型即可求解.【詳解】由題意得,即,由幾何概型得,在定義域內(nèi)任取一點,使的概率是.故選:A.11、B【解析】當(dāng)直線斜率存在時,設(shè)直線方程,聯(lián)立方程組,結(jié)合根與系數(shù)關(guān)系可得,進而求得取值范圍,當(dāng)斜率不存在是,可得,兩點坐標(biāo),進而可得的值.【詳解】當(dāng)直線斜率存在時,設(shè)直線方程為,,,聯(lián)立方程,得,恒成立,則,,,,,所以,當(dāng)直線斜率不存在時,直線方程為,所以,,,綜上所述:,故選:B.12、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析可知,由可求得結(jié)果.【詳解】雙曲線的漸近線方程為,由題意可知,.故答案為:.14、25【解析】將原問題轉(zhuǎn)化為三進制計算,即可求解【詳解】解:由題意可得,從左到右的數(shù)字依次為221,即古人一年的收入的錢數(shù)為故答案為:15、【解析】求出函數(shù)的導(dǎo)函數(shù),把代入即可得到切線的斜率,然后根據(jù)和斜率寫出切線的方程即可.【詳解】解:由函數(shù)知,把代入得到切線的斜率則切線方程為:,即.故答案為:【點睛】本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題16、【解析】對求導(dǎo),根據(jù)題設(shè)有且,即可得目標(biāo)式的值.【詳解】由題設(shè),且定義域為,則,所以,整理得,又,所以,兩邊取對數(shù)有,得:,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)題意,可知,可得,再根據(jù)橢圓的性質(zhì)可得,由此即可求出離心率;(2)將直線與橢圓方程聯(lián)立,由韋達定理得到,,再根據(jù)弦長公式,建立方程,即可求出的值,進而求出橢圓方程.【小問1詳解】解:由題意可知,橢圓上頂點坐標(biāo)為,左右頂點的坐標(biāo)分別為、,∴,即,則又,∴,所以橢圓的離心率;【小問2詳解】解:設(shè),,由得:,∴,,,∴,解得,∴,滿足,∴,∴橢圓C的方程為18、(1)(2)或【解析】(1)由圓心在直線上,設(shè),由點在圓上,列方程求,由此求出圓心坐標(biāo)及半徑,確定圓的方程;(2)當(dāng)切線的斜率存在時,設(shè)其方程為,由切線的性質(zhì)列方程求,再檢驗直線是否為切線,由此確定答案.小問1詳解】因為圓C的圓心在直線上,設(shè)圓心的坐標(biāo)為,圓C過點,,所以,即,解得,則圓心,半徑,所以圓的方程為;【小問2詳解】當(dāng)切線的斜率存在時,設(shè)直線的方程為,即,因為直線和圓相切,得,解得,所以直線方程為,當(dāng)切線的斜率不存在時,易知直線也是圓的切線,綜上,所求的切線方程為或19、(1)證明見解析;(2).【解析】(1)由正方體性質(zhì)易得,根據(jù)線面平行的判定可得面、面,再由面面平行的判定證明結(jié)論;(2)建立空間直角坐標(biāo)系,設(shè)正方體棱長為2,確定相關(guān)點的坐標(biāo),進而求兩個半平面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求二面角的余弦值【小問1詳解】在正方體中,且,且,且,則四邊形為平行四邊形,即有,因為面,面,則平面,同理平面,又,面,則平面平面E.小問2詳解】以點為坐標(biāo)原點,,,所在直線分別為、、軸建立如圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長為,則,,所以,,設(shè)平面的法向量為,則,令,則由平面,則是平面的一個法向量設(shè)平面與平面夾角,,因此平面與平面所成銳二面角的余弦值為20、(1)(2)(3)【解析】(1)由題意直接寫出基本事件即可得出答案.(2)樣本空間一共有個基本事件,由(1)可得答案.(3)列出“點數(shù)之和為7”的基本事件,從而可得答案.【小問1詳解】“同時拋擲兩顆骰子”的樣本空間是{1,2,…,6;1,2,…,6},其中i、j分別是拋擲第一顆與第二顆骰子所得的點數(shù).將“出現(xiàn)兩個1點”這個事件用A表示,則事件A就是子集.【小問2詳解】樣本空間一共有個基本事件,它們是等可能的,從而“出現(xiàn)兩個1點”的概率為.小問3詳解】將“點數(shù)之和為7”這個事件用B表示,則{,,,,,},事件B共有6個基本事件,從而“點數(shù)之和為7”的概率為.21、(1)證明見解析(2)【解析】(1)推導(dǎo)出平面,,,由此能證明平面(2)推導(dǎo)出,,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值【小問1詳解】證明:為圓錐的高,平面,又平面,,為劣弧的中點,,,平面,平面【小問2詳解】解:解:為劣弧的三等分點(靠近點,為底面圓的直徑,為圓上一點,并且,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論