河南省名校大聯(lián)考2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第1頁
河南省名校大聯(lián)考2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第2頁
河南省名校大聯(lián)考2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第3頁
河南省名校大聯(lián)考2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第4頁
河南省名校大聯(lián)考2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

河南省名校大聯(lián)考2024屆數(shù)學(xué)高二上期末復(fù)習(xí)檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.當(dāng)實數(shù),m變化時,的最大值是()A.3 B.4C.5 D.62.直線的一個法向量為()A. B.C. D.3.已知等比數(shù)列中,,,則首項()A. B.C. D.04.正數(shù)a,b滿足,若不等式對任意實數(shù)x恒成立,則實數(shù)m的取值范圍是A. B.C. D.5.邊長為的正方形沿對角線折成直二面角,、分別為、的中點,是正方形的中心,則的大小為()A. B.C. D.6.學(xué)校開設(shè)甲類選修課3門,乙類選修課4門,從中任選3門,甲乙兩類課程都有選擇的不同選法種數(shù)為()A.24 B.30C.60 D.1207.已知橢圓方程為,則該橢圓的焦距為()A.1 B.2C. D.8.如果,,那么直線不經(jīng)過的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限9.若一個正方體的全面積是72,則它的對角線長為()A. B.12C. D.610.執(zhí)行如圖所示的程序框圖,若輸出的,則輸人的()A. B.或C. D.或11.我國古代銅錢蘊(yùn)含了“外圓內(nèi)方”“天地合一”的思想.現(xiàn)有一銅錢如圖,其中圓的半徑為r,正方形的邊長為,若在圓內(nèi)隨即取點,取自陰影部分的概率是p,則圓周率的值為()A. B.C. D.12.已知中心在坐標(biāo)原點,焦點在軸上的雙曲線的離心率為,則其漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線,,若,則實數(shù)______14.過拋物線的焦點作互相垂直的兩條直線,分別交拋物線與A,C,B,D四點,則四邊形ABCD面積的最小值為___________15.某班名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖,估計該班本次測試平均分為______16.已知點,為拋物線:上不同于原點的兩點,且,則的面積的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四面體ABCD中,,平面ABC,點M為棱AB的中點,,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值18.(12分)已知拋物線的方程為,點,過點的直線交拋物線于兩點(1)求△OAB面積的最小值(為坐標(biāo)原點);(2)是否為定值?若是,求出該定值;若不是,說明理由19.(12分)已知命題p為“方程沒有實數(shù)根”,命題q為“”.(1)若p為真命題,求m的取值范圍;(2)若p和q有且只有一個為真命題,求m的取值范圍.20.(12分)設(shè)命題p:,命題q:關(guān)于x的方程無實根.(1)若p為真命題,求實數(shù)m的取值范圍;(2)若為假命題,為真命題,求實數(shù)m的取值范圍21.(12分)如圖,在四棱錐中,底面為菱形,,底面,,是的中點.(1)求證:平面;(2)求證:平面平面;(3)設(shè)點是平面上任意一點,直接寫出線段長度最小值.(不需證明)22.(10分)已知數(shù)列是等差數(shù)列,為其前n項和,,(1)求的通項公式;(2)若,求證:為等比數(shù)列

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)點到直線的距離公式可知可以表示單位圓上點到直線的距離,利用圓的性質(zhì)結(jié)合圖形即得.【詳解】由題可知,可以表示單位圓上點到直線的距離,設(shè),因直線,即表示恒過定點,根據(jù)圓的性質(zhì)可得.故選:D.2、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設(shè)法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.3、B【解析】設(shè)等比數(shù)列的公比為q,根據(jù)等比數(shù)列的通項公式,列出方程組,即可求得,進(jìn)而可求得答案.【詳解】設(shè)等比數(shù)列公比為q,則,解得,所以.故選:B4、A【解析】利用基本不等式求得的最小值,把問題轉(zhuǎn)化為恒成立的類型,求解的最大值即可.【詳解】,,且a,b為正數(shù),,當(dāng)且僅當(dāng),即時,,若不等式對任意實數(shù)x恒成立,則對任意實數(shù)x恒成立,即對任意實數(shù)x恒成立,,,故選:A【點睛】本題主要考查了恒成立問題,基本不等式求最值,二次函數(shù)求最值,屬于中檔題.5、B【解析】建立空間直角坐標(biāo)系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O(shè)為原點,分別以O(shè)B、OA、OC所在直線為x、y、z軸建立空間直角坐標(biāo)系則,,,,又,則故選:B6、B【解析】利用組合數(shù)計算出正確答案.【詳解】甲乙兩類課程都有選擇的不同選法種數(shù)為.故選:B7、B【解析】根據(jù)橢圓中之間的關(guān)系,結(jié)合橢圓焦距的定義進(jìn)行求解即可.【詳解】由橢圓的標(biāo)準(zhǔn)方程可知:,則焦距為,故選:B.8、A【解析】將直線化為,結(jié)合已知條件即可判斷不經(jīng)過的象限.【詳解】由題設(shè),直線可寫成,又,,∴,,故直線過二、三、四象限,不過第一象限.故選:A.9、D【解析】根據(jù)全面積得到正方體的棱長,再由勾股定理計算對角線.【詳解】設(shè)正方體的棱長為,對角線長為,則有,解得,從而,解得.故選:D10、A【解析】根據(jù)題意可知該程序框圖顯示的算法函數(shù)為,分和兩種情況討論即可得解.【詳解】解:該程序框圖顯示得算法函數(shù)為,由,當(dāng)時,,方程無解;當(dāng)時,,解得,綜上,若輸出的,則輸入的.故選:A.11、B【解析】根據(jù)圓和正方形的面積公式結(jié)合幾何概型概率公式求解即可.【詳解】由可得故選:B12、A【解析】根據(jù)離心率求出的值,再根據(jù)漸近線方程求解即可.【詳解】因雙曲線焦點在軸上,所以漸近線方程為:,又因為雙曲線離心率為,且,所以,解得,即漸近線方程為:.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由直線垂直可得到關(guān)于實數(shù)a的方程,解方程即可.【詳解】由直線垂直可得:,解得:.故答案為:14、512【解析】設(shè)出直線的方程與拋物線方程聯(lián)立,結(jié)合拋物線的定義、一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解即可.【詳解】拋物線焦點的坐標(biāo)為,由題意可知:直線存在斜率且不為零,所以設(shè)直線的斜率為,所以直線的方程為,與拋物線的方程聯(lián)立得:,設(shè),所以,由拋物線的定義可知:,因為直線互相垂直,所以直線的斜率為,同理可得:,所以四邊形ABCD面積為:,當(dāng)且僅當(dāng)時取等號,即當(dāng)時取等號,故答案為:51215、【解析】將每個矩形底邊的中點值乘以對應(yīng)矩形的面積,即可得解.【詳解】由頻率分布直方圖可知,該班本次測試平均分為.故答案為:.16、【解析】設(shè),,利用可得即可求得,利用兩點間距離公式求出、,面積,利用基本不等式即可求最值.【詳解】設(shè),,由可得,解得:,,,,,所以,當(dāng)且僅當(dāng)時等號成立,所以的面積的最小值為,故答案為:.【點睛】關(guān)鍵點點睛:本題解題的關(guān)鍵點是設(shè),坐標(biāo),采用設(shè)而不求的方法,將轉(zhuǎn)化為,求出參數(shù)之間的關(guān)系,再利用基本不等式求的最值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點,分別以,,方向為x軸,y軸,z軸的正方向的空間直角坐標(biāo)系,分別求得平面BCD的一個法向量和平面DCM的一個法向量,然后由求解【小問1詳解】證明:∵平面ABC,∴,又,,∴平面ABD,∴【小問2詳解】如圖,以A為原點,分別以,,的方向為x軸,y軸,z軸的正方向的空間直角坐標(biāo)系,則,,,,,依題意,可得,設(shè)為平面BCD的一個法向量,則,不妨令,可得設(shè)為平面DCM的一個法向量,則,不妨令,可得,所以所以平面BCD和平面DCM的夾角的余弦值為18、(1);(2)是,該定值.【解析】(1)根據(jù)弦長公式、點到直線距離公式,結(jié)合三角形面積公式進(jìn)行求解即可;(2)根據(jù)兩點間距離公式,結(jié)合一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解即可.【小問1詳解】顯然直線存在斜率,設(shè)直線的方程為:,所以有,設(shè),則有,,原點到直線的距離為:,△OAB的面積為:,當(dāng)時,有最小值,最小值為;【小問2詳解】是定值,理由如下:由(1)可知:,,【點睛】關(guān)鍵點睛:利用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.19、(1)(2)【解析】(1)方程無根,利用根的判別式小于0求出m的取值范圍;(2)和有且只有一個為真命題,分兩種情況進(jìn)行求解,最終求出結(jié)果.【小問1詳解】由方程沒有實數(shù)根,得,解得:.所以m的取值范圍為.【小問2詳解】和有且只有一個為真命題,分為下列兩種情況:①當(dāng)真且假時,且,得;②當(dāng)假且真時,且,得.所以,的取值范圍為.20、(1)(2)【解析】(1)解一元二次不等式,即可求得當(dāng)為真命題時的取值范圍;(2)先求得命題為真命題時的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類討論,即可求得的取值范圍.【詳解】(1)當(dāng)為真命題時,解不等式可得;(2)當(dāng)為真命題時,由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點睛】本題考查了根據(jù)命題真假求參數(shù)的取值范圍,由復(fù)合命題真假判斷命題真假,并求參數(shù)的取值范圍,屬于基礎(chǔ)題.21、(1)證明見解析(2)證明見解析(3)【解析】(1)設(shè),連結(jié),根據(jù)中位線定理即可證,再根據(jù)線面平行的判定定理,即可證明結(jié)果;(2)由菱形的性質(zhì)可知,可證,又底面,可得,再根據(jù)面面垂直的判定定理,即可證明結(jié)果;(3)根據(jù)等體積法,即,經(jīng)過計算直接寫出結(jié)果即可.【小問1詳解】證明:設(shè),連結(jié).因為底面為菱形,所以為的中點,又因為E是PC的中點,所以.又因為平面,平面,所以平面.【小問

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論