廣西南寧三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第1頁
廣西南寧三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第2頁
廣西南寧三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第3頁
廣西南寧三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第4頁
廣西南寧三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣西南寧三中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.的內(nèi)角A,B,C的對邊分別為a,b,c,若,則一定是()A.等邊三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形2.已知數(shù)列滿足,,則()A. B.C. D.3.一部影片在4個單位輪流放映,每個單位放映一場,不同的放映次序有()A.種 B.4種C.種 D.種4.若直線:與直線:平行,則a的值是()A.1 B.C.或6 D.或75.已知是雙曲線的左焦點(diǎn),圓與雙曲線在第一象限的交點(diǎn)為,若的中點(diǎn)在雙曲線的漸近線上,則此雙曲線的離心率是()A. B.2C. D.6.?dāng)?shù)列是等比數(shù)列,是其前n項(xiàng)之積,若,則的值是()A.1024 B.256C.2 D.5127.已知數(shù)列滿足,,數(shù)列的前n項(xiàng)和為,若,,成等差數(shù)列,則n=()A.6 B.8C.16 D.228.如圖,在直三棱柱中,,,E是的中點(diǎn),則直線BC與平面所成角的正弦值為()A. B.C. D.9.在空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸的對稱點(diǎn)為點(diǎn),則點(diǎn)到直線的距離為()A. B.C. D.610.若命題“對任意,使得成立”是真命題,則實(shí)數(shù)a的取值范圍是()A. B.C. D.11.已知下列四個命題,其中正確的是()A. B.C. D.12.已知,則下列不等式一定成立的是()A B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),,對一切,恒成立,則實(shí)數(shù)的取值范圍為________.14.若滿足約束條件,則的最大值為_____________15.已知平面和兩條不同的直線,則下列判斷中正確的序號是___________.①若,則;②若,則;③若,則;④若,則;16.方程的曲線的一條對稱軸是_______,的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,當(dāng)以為始邊,為終邊的角時,.(1)求的方程(2)過點(diǎn)的直線交于兩點(diǎn),以為直徑的圓平行于軸的直線相切于點(diǎn),線段交于點(diǎn),求的面積與的面積的比值18.(12分)已知圓C的圓心在直線上,圓心到x軸的距離為2,且截y軸所得弦長為(1)求圓C的方程;(2)若圓C上至少有三個不同的點(diǎn)到直線的距離為,求實(shí)數(shù)k的取值范圍19.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn);(I)求異面直線A1B,AC1所成角的余弦值;(II)求直線AB1與平面C1AD所成角的正弦值20.(12分)平面直角坐標(biāo)系xOy中,點(diǎn),,點(diǎn)M滿足.記M的軌跡為C.(1)說明C是什么曲線,并求C的方程;(2)已知經(jīng)過的直線l與C交于A,B兩點(diǎn),若,求.21.(12分)如圖,在棱長為的正方體中,為中點(diǎn)(1)求二面角的大小;(2)探究線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置;若不存在,說明理由22.(10分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)若有兩個零點(diǎn),,求的取值范圍,并證明:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用余弦定理化角為邊,從而可得出答案.【詳解】解:因?yàn)?,所以,則,所以,所以是等腰三角形.故選:B.2、A【解析】根據(jù)遞推關(guān)系依次求出即可.【詳解】,,,,,.故選:A.3、C【解析】根據(jù)題意得到一部影片在4個單位輪流放映,相當(dāng)于四個單位進(jìn)行全排列,即可得到答案.【詳解】一部影片在4個單位輪流放映,相當(dāng)于四個單位進(jìn)行全排列,所以不同的放映次序有種,故選:C4、D【解析】根據(jù)直線平行的充要條件即可求出【詳解】依題意可知,顯然,所以由可得,,解得或7故選:D5、A【解析】根據(jù)雙曲線的幾何性質(zhì)和平面幾何性質(zhì),建立關(guān)于a,b,c的方程,從而可求得雙曲線的離心率得選項(xiàng).【詳解】由題意可設(shè)右焦點(diǎn)為,因?yàn)?,且圓:,所以點(diǎn)在以焦距為直徑的圓上,則,設(shè)的中點(diǎn)為點(diǎn),則為的中位線,所以,則,又點(diǎn)在漸近線上,所以,且,則,,所以,所以,則在中,可得,,即,解得,所以,故選:A【點(diǎn)睛】方法點(diǎn)睛:(1)求雙曲線的離心率時,將提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,利用和轉(zhuǎn)化為關(guān)于e的方程或不等式,通過解方程或不等式求得離心率的值或取值范圍(2)對于焦點(diǎn)三角形,要注意雙曲線定義的應(yīng)用,運(yùn)用整體代換的方法可以減少計算量6、D【解析】設(shè)數(shù)列的公比為q,由已知建立方程求得q,再利用等比數(shù)列的通項(xiàng)公式可求得答案.【詳解】解:因?yàn)閿?shù)列是等比數(shù)列,是其前n項(xiàng)之積,,設(shè)數(shù)列的公比為q,所以,解得,所以,故選:D.7、D【解析】利用累加法求得列的通項(xiàng)公式,再利用裂項(xiàng)相消法求得數(shù)列的前n項(xiàng)和為,再根據(jù),,成等差數(shù)列,得,從而可得出答案.【詳解】解:因?yàn)?,且,所以?dāng)時,,因?yàn)橐矟M足,所以.因?yàn)?,所?若,,成等差數(shù)列,則,即,得.故選:D.8、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,設(shè)平面的法向量為,則令,得.因?yàn)椋?,故直線BC與平面所成角的正弦值為.故選:D.9、C【解析】按照空間中點(diǎn)到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點(diǎn)到直線的距離為.故選:C.10、A【解析】由題得對任意恒成立,求出的最大值即可.【詳解】解:由題得對任意恒成立,(當(dāng)且僅當(dāng)時等號成立)所以故選:A11、B【解析】根據(jù)基本初等函數(shù)的求導(dǎo)公式和求導(dǎo)法則即可求解判斷.【詳解】,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B.12、B【解析】運(yùn)用不等式的性質(zhì)及舉反例的方法可求解.【詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因?yàn)?,所以,所以,故B正確;對于C,因?yàn)椋?,所以不成立,故C不正確;對于D,因?yàn)?,所以,所以,故D不正確.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】通過分離參數(shù),得到關(guān)于x的不等式;再構(gòu)造函數(shù),通過導(dǎo)數(shù)求得函數(shù)的最值,進(jìn)而求得a的取值范圍【詳解】因?yàn)椋虢馕鍪娇傻梅蛛x參數(shù)a可得令()則,令解得所以當(dāng)0<x<1,,所以h(x)在(0,1)上單調(diào)遞減當(dāng)1<x,,所以h(x)在(1,+∞)上單調(diào)遞增,所以h(x)在x=1時取得極小值,也即最小值所以h(x)≥h(1)=4因?yàn)閷σ磺衳∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4所以a的取值范圍為【點(diǎn)睛】本題綜合考查了函數(shù)與導(dǎo)數(shù)的應(yīng)用,分離參數(shù)法,利用導(dǎo)數(shù)求函數(shù)的最值,屬于中檔題14、【解析】由下圖可得在處取得最大值,即.考點(diǎn):線性規(guī)劃.【方法點(diǎn)晴】本題考查線性規(guī)劃問題,靈活性較強(qiáng),屬于較難題型.考生應(yīng)注總結(jié)解決線性規(guī)劃問題的一般步驟(1)在直角坐標(biāo)系中畫出對應(yīng)的平面區(qū)域,即可行域;(2)將目標(biāo)函數(shù)變形為;(3)作平行線:將直線平移,使直線與可行域有交點(diǎn),且觀察在可行域中使最大(或最?。r所經(jīng)過的點(diǎn),求出該點(diǎn)的坐標(biāo);(4)求出最優(yōu)解:將(3)中求出的坐標(biāo)代入目標(biāo)函數(shù),從而求出的最大(?。┲?15、②④【解析】根據(jù)直線與直線,直線與平面的位置關(guān)系依次判斷每個選項(xiàng)得到答案.詳解】若,則或,異面,或,相交,①錯誤;若,則,②正確;若,則或或與相交,③錯誤;若,則,④正確;故答案為:②④.16、①.x軸或直線②.【解析】根據(jù)給定條件分析方程的性質(zhì)即可求得對稱軸及x的取值范圍作答.【詳解】方程中,因,則曲線關(guān)于x軸對稱,又,解得,此時曲線與都關(guān)于直線對稱,曲線的對稱軸是x軸或直線,的取值范圍是.故答案為:x軸或直線;三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)過點(diǎn)作,垂足為,過點(diǎn)作,垂足為,根據(jù)拋物線的定義,得到,求得,即可求得拋物線的方程;(2)設(shè)直線的方程為,聯(lián)立方程組求得,得到,由拋物線的定義得到,根據(jù),求得,設(shè),得到,進(jìn)而求得,因?yàn)闉榈闹悬c(diǎn),求得,即可求解.【小問1詳解】解:由題意,拋物線,可得其準(zhǔn)線方程,如圖所示,過點(diǎn)作,垂足為,過點(diǎn)作,垂足為,因?yàn)闀r,,可得,又由拋物線的定義,可得,解得,所以拋物線的方程為.【小問2詳解】解:由拋物線,可得,設(shè),因?yàn)橹本€的直線過點(diǎn),設(shè)直線的方程為聯(lián)立方程組,整理得,可得,則,因?yàn)闉榈闹悬c(diǎn),所以,由拋物線的定義得,設(shè)圓與直線相切于點(diǎn),因?yàn)榻挥邳c(diǎn),所以且,所以,即,解得,設(shè),則,且,可得,因?yàn)椋渣c(diǎn)為的中點(diǎn),所以,又因?yàn)闉榈闹悬c(diǎn),可得,所以,即的面積與的面積的比值為.18、(1)或;(2).【解析】(1)設(shè)圓心為,由題意及圓的弦長公式即可列方程組,解方程組即可;(2)由題意可將問題轉(zhuǎn)化為圓心到直線l:的距離,解不等式即可.【詳解】解:(1)設(shè)圓心為,半徑為r,根據(jù)題意得,解得,所以圓C的方程為或(2)由(1)知圓C的圓心為或,半徑為,由圓C上至少有三個不同的點(diǎn)到直線l:的距離為,可知圓心到直線l:的距離即,所以,解得所以直線l斜率的取值范圍為19、(I)(II)【解析】(I)以,,為x,y,z軸建立空間直角坐標(biāo)系A(chǔ)﹣xyz,可得和的坐標(biāo),可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),由可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=,進(jìn)而可得答案解:(I)以,,x,y,z軸建立空間直角坐標(biāo)系A(chǔ)﹣xyz,則可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴異面直線A1B,AC1所成角的余弦值為:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),設(shè)平面C1AD的法向量為=(x,y,z),則可得,即,取x=1可得=(1,﹣1,),設(shè)直線AB1與平面C1AD所成的角為θ,則sinθ=|cos<,>|=∴直線AB1與平面C1AD所成角的正弦值為:考點(diǎn):異面直線及其所成的角;直線與平面所成的角20、(1)C是以點(diǎn),為左右焦點(diǎn)的橢圓,(2)【解析】(1)根據(jù)橢圓的定義即可得到答案.(2)當(dāng)垂直于軸時,,舍去.當(dāng)不垂直于軸時,可設(shè),再根據(jù)題意結(jié)合韋達(dá)定理求解即可.【小問1詳解】因?yàn)?,,所以C是以點(diǎn),為左右焦點(diǎn)的橢圓.于是,,故,因此C的方程為.【小問2詳解】當(dāng)垂直于軸時,,,舍去.當(dāng)不垂直于軸時,可設(shè),代入可得.因?yàn)椋O(shè),,則,.因?yàn)?,所?同理.因此.由可得,,于是.根據(jù)橢圓定義可知,于是.21、(1)(2)點(diǎn)為線段上靠近點(diǎn)的三等分點(diǎn)【解析】(1)建立空間直角坐標(biāo)系,分別寫出點(diǎn)的坐標(biāo),求出兩個平面的法向量代入公式求解即可;(2)假設(shè)存在,設(shè),利用相等向量求出坐標(biāo),利用線面平行的向量法代入公式計算即可.【小問1詳解】如下圖所示,以為原點(diǎn),,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則,,,,,,.所以,設(shè)平面的法向量,所以,即,令,則,,所以,連接,因?yàn)椋?,,平面,平面,平面,所以平面,所以為平面的一個法向量,所以,由圖知,二面角為銳二面角,所以二面角的大小為【小問2詳解】假設(shè)在線段上存在點(diǎn),使得平面,設(shè),,,因?yàn)槠矫?,所以,即所以,即解得所以在線段上存在點(diǎn),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論