




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省長春汽車經(jīng)濟(jì)技術(shù)開發(fā)區(qū)六中2024屆高二上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.兩個圓和的位置是關(guān)系是()A.相離 B.外切C.相交 D.內(nèi)含2.過點且與原點距離最大的直線方程是()A. B.C. D.3.已知圓:,圓:,則兩圓的位置關(guān)系為()A.外離 B.外切C.相交 D.內(nèi)切4.若離散型隨機變量的所有可能取值為1,2,3,…,n,且取每一個值的概率相同,若,則n的值為()A.4 B.6C.9 D.105.已知f(x)為R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為,且對于任意的x∈R,均有,則()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)6.已知點是拋物線上的動點,過點作圓的切線,切點為,則的最小值為()A. B.C. D.7.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.818.如圖,在直三棱柱中,,,D為AB的中點,點E在線段上,點F在線段上,則線段EF長的最小值為()A B.C.1 D.9.在下列命題中正確的是()A.已知是空間三個向量,則空間任意一個向量總可以唯一表示為B.若所在的直線是異面直線,則不共面C.若三個向量兩兩共面,則共面D.已知A,B,C三點不共線,若,則A,B,C,D四點共面10.拋物線的焦點到準(zhǔn)線的距離為()A. B.C. D.11.設(shè)拋物線的焦點為,準(zhǔn)線與軸的交點為,是上一點,若,則()A. B.C. D.12.已知在空間直角坐標(biāo)系(O為坐標(biāo)原點)中,點關(guān)于x軸的對稱點為點B,則z軸與平面OAB所成的線面角為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)滿足,則的取值范圍是____________14.圓錐曲線有良好的光學(xué)性質(zhì),光線從橢圓的一個焦點發(fā)出,被橢圓反射后會經(jīng)過橢圓的另一個焦點(如左圖);光線從雙曲線的一個焦點發(fā)出,被雙曲線反射后的反射光線等效于從另一個焦點射出(如中圖).封閉曲線E(如右圖)是由橢圓C1:+=1和雙曲線C2:-=1在y軸右側(cè)的一部分(實線)圍成.光線從橢圓C1上一點P0出發(fā),經(jīng)過點F2,然后在曲線E內(nèi)多次反射,反射點依次為P1,P2,P3,P4,…,若P0,P4重合,則光線從P0到P4所經(jīng)過的路程為_________.15.從甲、乙、丙、丁4位同學(xué)中,選出2位同學(xué)分別擔(dān)任正、副班長的選法數(shù)可以用表示為____________.16.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點A、B的距離之比為定值(且)的點的軌跡是圓”.后來人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓,在平面直角坐標(biāo)系中,,,點滿足,則點P的軌跡方程為__________.(答案寫成標(biāo)準(zhǔn)方程),的最小值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)等比數(shù)列中,,(1)求的通項公式;(2)記為的前n項和.若,求m的值18.(12分)已知數(shù)列是公差為2的等差數(shù)列,它的前n項和為Sn,且成等比數(shù)列.(1)求的通項公式;(2)求數(shù)列的前n項和.19.(12分)在二項式的展開式中;(1)若,求常數(shù)項;(2)若第4項的系數(shù)與第7項的系數(shù)比為,求:①二項展開式中的各項的二項式系數(shù)之和;②二項展開式中各項的系數(shù)之和20.(12分)如圖,在三棱錐中,,,為的中點.(1)求證:平面;(2)若點在棱上,且,求點到平面的距離.21.(12分)已知拋物線C:上一點到焦點F的距離為2(1)求實數(shù)p的值;(2)若直線l過C的焦點,與拋物線交于A,B兩點,且,求直線l的方程22.(10分)某消費者協(xié)會在3月15號舉行了以“攜手共治,暢享消費”為主題的大型宣傳咨詢服務(wù)活動,著力提升消費者維權(quán)意識,組織方從參加活動的群眾中隨機抽取120名群眾,按年齡將這120名群眾分成5組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.(1)求圖中m的值;(2)估算這120名群眾的年齡的中位數(shù)(結(jié)果精確到0.1);(3)已知第1組群眾中男性有2人,組織方要從第1組中隨機抽取2名群眾組成維權(quán)志愿者服務(wù)隊,求恰有一名女性的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)圓的方程得出兩圓的圓心和半徑,再得出圓心距離與兩圓的半徑的關(guān)系,可得選項.【詳解】圓的圓心為,半徑,的圓心為,半徑,則,所以兩圓的位置是關(guān)系是相交,故選:C.【點睛】本題考查兩圓的位置關(guān)系,關(guān)鍵在于運用判定兩圓的位置關(guān)系一般利用幾何法.即比較圓心之間的距離與半徑之和、之差的大小關(guān)系,屬于基礎(chǔ)題.2、A【解析】過點且與原點O距離最遠(yuǎn)的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠(yuǎn)的直垂直于直線,,∴過點且與原點O距離最遠(yuǎn)的直線的斜率為,∴過點且與原點O距離最遠(yuǎn)的直線方程為:,即.故選:A3、C【解析】求出兩圓的圓心和半徑,根據(jù)圓心距與半徑和與差的關(guān)系,判斷圓與圓的位置關(guān)系【詳解】圓:的圓心為,半徑,圓:,即,圓心,半徑,兩圓的圓心距,顯然,即,所以圓與圓相交.故選:C4、D【解析】根據(jù)分布列即可求出【詳解】因為,所以故選:D5、D【解析】通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)確定正確答案.【詳解】構(gòu)造函數(shù),所以在上遞增,所以,即.故選:D6、C【解析】分析可知圓的圓心為拋物線的焦點,可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設(shè)點的坐標(biāo)為,有,由圓的圓心坐標(biāo)為,是拋物線的焦點坐標(biāo),有,由圓的幾何性質(zhì)可得,又由,可得的最小值為故選:C.7、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.8、B【解析】根據(jù)給定條件建立空間直角坐標(biāo)系,令,用表示出點E,F(xiàn)坐標(biāo),再由兩點間距離公式計算作答.【詳解】依題意,兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,則,,設(shè),則,設(shè),有,線段EF長最短,必滿足,則有,解得,即,因此,,當(dāng)且僅當(dāng)時取“=”,所以線段EF長的最小值為.故選:B9、D【解析】對于A,利用空間向量基本定理判斷,對于B,利用向量的定義判斷,對于C,舉例判斷,對于D,共面向量定理判斷【詳解】對于A,若三個向量共面,在平面,則空間中不在平面的向量不能用表示,所以A錯誤,對于B,因為向量是自由向量,是可以自由平移,所以當(dāng)所在的直線是異面直線時,有可能共面,所以B錯誤,對于C,當(dāng)三個向量兩兩共面時,如空間直角坐標(biāo)系中的3個基向量兩兩共面,但這3個向量不共面,所以C錯誤,對于D,因為A,B,C三點不共線,,且,所以A,B,C,D四點共面,所以D正確,故選:D10、B【解析】根據(jù)拋物線的幾何性質(zhì)可得選項.【詳解】由得,所以,所以拋物線的焦點到準(zhǔn)線的距離為1,故選:B.11、D【解析】求出拋物線的準(zhǔn)線方程,可得出點的坐標(biāo),利用拋物線的定義可求得點的坐標(biāo),再利用兩點間的距離公式可求得結(jié)果.【詳解】易知拋物線焦點為,準(zhǔn)線方程為,可得準(zhǔn)線與軸的交點,設(shè)點,由拋物線的性質(zhì),,可得,所以,,解得,即點,所以.故選:D.12、B【解析】根據(jù)點關(guān)于坐標(biāo)軸對稱的性質(zhì),結(jié)合空間向量夾角公式進(jìn)行求解即可.【詳解】因為點關(guān)于x軸的對稱點為,所以,設(shè)平面OAB的一個法向量為,則得所以,令,得,所以又z軸的一個方向向量為,設(shè)z軸與平面OAB所成的線面角為,則,所以所求的線面角為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】去絕對值分別列出每個象限解析式,數(shù)形結(jié)合利用距離求解范圍.【詳解】當(dāng),表示橢圓第一象限部分;當(dāng),表示雙曲線第四象限部分;當(dāng),表示雙曲線第二象限部分;當(dāng),不表示任何圖形;以及兩點,作出大致圖象如圖:曲線上的點到的距離為,根據(jù)雙曲線方程可得第二四象限雙曲線漸近線方程都是,與距離為2,曲線二四象限上的點到的距離為小于且無限接近2,考慮曲線第一象限的任意點設(shè)為到的距離,當(dāng)時取等號,所以,則的取值范圍是故答案為:14、【解析】結(jié)合橢圓、雙曲線的定義以及它們的光學(xué)性質(zhì)求得正確答案.【詳解】橢圓;雙曲線,雙曲線和橢圓的焦點重合.根據(jù)雙曲線的定義有,所以①,②,根據(jù)橢圓的定義由,所以路程.故答案為:15、【解析】由題意知:從4為同學(xué)中選出2位進(jìn)行排列,即可寫出表示方式.【詳解】1、從4位同學(xué)選出2位同學(xué),2、把所選出的2位同學(xué)任意安排為正、副班長,∴選法數(shù)為.故答案為:.16、①.②.【解析】設(shè)點P坐標(biāo),然后用直接法可求;根據(jù)軌跡方程和數(shù)量積的坐標(biāo)表示對化簡,結(jié)合軌跡方程可得x的范圍,然后可解.【詳解】設(shè)P點坐標(biāo)為,則由,得,化簡得,即.因為,所以因為點P在圓上,故所以,故的最小值為.故答案為:,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)5.【解析】(1)設(shè)的公比為q,解方程即得解;(2)分兩種情況解方程即得解.【小問1詳解】解:設(shè)的公比為q,由題設(shè)得由已知得,解得(舍去),或故或【小問2詳解】解:若,則由,得,解得若,則由,得,因為,所以此方程沒有正整數(shù)解綜上,18、(1),(2)【解析】(1)由題意可得,從而可求出,進(jìn)而可求得的通項公式;(2)由(1)可得,然后利用裂項相消求和法可求得結(jié)果【詳解】(1)因為數(shù)列是公差為2的等差數(shù)列,且成等比數(shù)列,所以即,解得,所以;(2)由(1)得,所以.19、(1)60(2)①1024;②1【解析】(1)根據(jù)二項式定理求解(2)根據(jù)二項式定理與條件求解,二項式系數(shù)之和為,系數(shù)和可賦值【小問1詳解】若,則,(,…,9)令∴∴常數(shù)項為.【小問2詳解】,(,…,),解得①②令,得系數(shù)和為20、(1)證明見解析;(2)【解析】(1)易得,再由勾股定理逆定理證明,即可得線面垂直;(2)根據(jù)(1)得,進(jìn)而根據(jù)幾何關(guān)系,利用等體積法求解即可.【詳解】解:(1)連接,∵,是中點,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵點在棱上,且,,為的中點.∴,∴由余弦定理得,即,∴,由(1)平面,設(shè)點到平面的距離為∴,即,解得:所以點到平面的距離為.21、(1)2(2)或【解析】(1)根據(jù)拋物線上的點到焦點與準(zhǔn)線的距離相等可得到結(jié)果(2)通過聯(lián)立拋物線與直線方程利用韋達(dá)定理求解關(guān)系式即可得到結(jié)果【小問1詳解】拋物線焦點為,準(zhǔn)線方程為,因為點到焦點F距離為2,所以,解得【小問2詳解】拋物線C的焦點坐標(biāo)為,當(dāng)斜率不存在時,可得不滿足題意,當(dāng)斜率存在時,設(shè)直線l的方程為聯(lián)立方程,得,顯然,設(shè),,則,所以,解得所以直線l的方程為或22、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有頻率和為1求出;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 買賣種子合同范本
- 農(nóng)業(yè)委托種植合同范本
- 體育新城租房合同范本
- 剩余瓷磚售賣合同范本
- 人工包給勞務(wù)公司合同范本
- 協(xié)助出口退稅合同范本
- 農(nóng)資經(jīng)營聘用合同范本
- 3人共同合作合同范本
- lng承運合同范本
- 醫(yī)保專員勞動合同范本
- 幼兒園一日活動流程教師培訓(xùn)
- 2024-2025學(xué)年山東省濰坊市高一上冊1月期末考試數(shù)學(xué)檢測試題(附解析)
- 征信入校園教育課件
- 《你當(dāng)像鳥飛往你的山》讀書分享讀書分享筆記
- 電玩城培訓(xùn)課件
- 2025年全年日歷-含農(nóng)歷、國家法定假日-帶周數(shù)豎版
- 《電子商務(wù)系統(tǒng)分析與設(shè)計》課件-電子商務(wù)系統(tǒng)規(guī)劃
- 2024年重大事項內(nèi)部會審制度(3篇)
- 飛機乘務(wù)人員培訓(xùn)課件
- 2025年山東鐵投集團(tuán)招聘筆試參考題庫含答案解析
- 解讀《干部教育培訓(xùn)工作條例》
評論
0/150
提交評論