




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
宜昌市邁克學習能力培訓學校業(yè)精于勤荒于嬉PAGEPAGE4編寫人:王老師勾股定理知識點匯總基礎知識點:1.勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,,斜邊為,那么2.勾股定理的證明勾股定理的證明方法很多,常見的是拼圖的方法用拼圖的方法驗證勾股定理的思路是①圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變②根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導出勾股定理常見方法如下:方法一:,,化簡可證.方法二:四個直角三角形的面積與小正方形面積的和等于大正方形的面積.四個直角三角形的面積與小正方形面積的和為大正方形面積為所以方法三:,,化簡得證勾股定理的適用范圍勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征。勾股定理的應用①已知直角三角形的任意兩邊長,求第三邊在中,,則,,②知道直角三角形一邊,可得另外兩邊之間的數(shù)量關系③可運用勾股定理解決一些實際問題5.勾股定理的逆定理如果三角形三邊長,,滿足,那么這個三角形是直角三角形,其中為斜邊。勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運用這一定理時,可用兩小邊的平方和與較長邊的平方作比較,若它們相等時,以,,為三邊的三角形是直角三角形;若,時,以,,為三邊的三角形是鈍角三角形;若,時,以,,為三邊的三角形是銳角三角形;定理中,,及只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長,,滿足,那么以,,為三邊的三角形是直角三角形,但是為斜邊該定理在應用時,同學們要注意處理好如下幾個要點:已知的條件:某三角形的三條邊的長度.②滿足的條件:最大邊的平方=最小邊的平方+中間邊的平方.③得到的結論:這個三角形是直角三角形,并且最大邊的對角是直角.④如果不滿足條件,就說明這個三角形不是直角三角形。6.勾股數(shù)滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù)。注意:①勾股數(shù)必須是正整數(shù),不能是分數(shù)或小數(shù)。②一組勾股數(shù)擴大相同的正整數(shù)倍后,仍是勾股數(shù)。常見勾股數(shù)有:(3,4,5
)(5,12,13
)(
6,8,10
)
(
7,24,25
)
(
8,15,17
)(9,12,15
)
③用含字母的代數(shù)式表示組勾股數(shù):(為正整數(shù));(為正整數(shù))(,為正整數(shù))7.勾股定理的應用勾股定理能夠幫助我們解決直角三角形中的邊長的計算或直角三角形中線段之間的關系的證明問題.在使用勾股定理時,必須把握直角三角形的前提條件,了解直角三角形中,斜邊和直角邊各是什么,以便運用勾股定理進行計算,應設法添加輔助線(通常作垂線),構造直角三角形,以便正確使用勾股定理進行求解.勾股定理逆定理的應用勾股定理的逆定理能幫助我們通過三角形三邊之間的數(shù)量關系判斷一個三角形是否是直角三角形,在具體推算過程中,應用兩短邊的平方和與最長邊的平方進行比較,切不可不加思考的用兩邊的平方和與第三邊的平方比較而得到錯誤的結論.勾股定理及其逆定理的應用勾股定理及其逆定理在解決一些實際問題或具體的幾何問題中,是密不可分的一個整體.通常既要通過逆定理判定一個三角形是直角三角形,又要用勾股定理求出邊的長度,二者相輔相成,完成對問題的解決.常見圖形:10、互逆命題的概念如果一個命題的題設和結論分別是另一個命題的結論和題設,這樣的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。經(jīng)過證明被確認正確的命題叫做定理如果一個定理的的逆命題經(jīng)過證明是正確的,它也是一個定理,稱這兩個定理互為逆定理例3:求(1)若三角形三條邊的長分別是7,24,25,則這個三角形的最大內(nèi)角是度。(2)已知三角形三邊的比為1::2,則其最小角為。考點五:應用勾股定理解決樓梯上鋪地毯問題某樓梯的側面視圖如圖3所示,其中米,,,因某種活動要求鋪設紅色地毯,則在AB段樓梯所鋪地毯的長度應為
,面積為考點六、利用列方程求線段的長(方程思想)ABABC2、一架長2.5的梯子,斜立在一豎起的墻上,梯子底端距離墻底0.7(如圖),如果梯子的頂端沿墻下滑0.4,那么梯子底端將向左滑動米3、如圖,一個長為10米的梯子,斜靠在墻面上,梯子的頂端距地面的垂直距離為8米,如果梯子的頂端下滑1米,那么,梯子底端的滑動距離1米,(填“大于”,“等于”,或“小于”)4、在一棵樹10m高的B處,有兩只猴子,一只爬下樹走到離樹20m處的池塘A處;另外一只爬到樹頂D處后直接躍到A外,距離以直線計算,如果兩只猴子所經(jīng)過的距離相等,試問這棵樹有多高?60120140B60120140B60AC6、如圖:有兩棵樹,一棵高8米,另一棵高2米,兩樹相距8米,一只小鳥從一棵樹的樹梢飛到另一棵樹的樹梢,至少飛了米.7、如圖所示,某人到一個荒島上去探寶,在A處登陸后,往東走8km,又往北走2km,遇到障礙后又往西走3km,再折向北方走到5km處往東一拐,僅1km就找到了寶藏,問:登陸點(A處)到寶藏埋藏點(B處)的直線距離是多少?考點七:折疊問題1、如圖,有一張直角三角形紙片,兩直角邊AC=6,BC=8,將△ABC折疊,使點C落在A邊上上的點E,折痕為AD,連接DE,則CD等于()A.B.C.D.32、如圖所示,已知△ABC中,∠C=90°,AB的垂直平分線交BC于M,交AB于N,若AC=4,MB=2MC,求AB的長.3、折疊矩形ABCD的一邊AD,點D落在BC邊上的點F處,已知AB=8CM,BC=10CM,求CF和EC。ABCEFD4、如圖,在長方形ABCD中,DC=5,在DC邊上存在一點E,沿直線AE把△ABCEFD5、如圖,矩形紙片ABCD的長AD=9㎝,寬AB=3㎝,將其折疊,使點D與點F重合,那么折疊后DE的長是多少?6、如圖,在長方形ABCD中,將ABC沿AC對折至AEC位置,CE與AD交于點F。(1)試說明:AF=FC;(2)如果AB=3,BC=4,求AF的長7、如圖2所示,將長方形ABCD沿直線AE折疊,頂點D正好落在BC邊上F點處,已知CE=3cm,AB=8cm,則圖中陰影部分面積為_______.8、如圖,把矩形ABCD沿直線BD向上折疊,使點C落在C′的位置上,已知AB=3,BC=7,重合部分△EBD的面積為________.9、如圖5,將正方形ABCD折疊,使頂點A與CD邊上的點M重合,折痕交AD于E,交BC于F,邊AB折疊后與BC邊交于點G。如果M為CD邊的中點,求證:DE:DM:EM=3:4:5。10、如圖2-5,長方形ABCD中,AB=3,BC=4,若將該矩形折疊,使C點與A點重合,則折疊后痕跡EF的長為()A.3.74B.3.75C.3.76D.3.772-511、如圖1-3-11,有一塊塑料矩形模板ABCD,長為10cm,寬為4cm,將你手中足夠大的直角三角板PHF的直角頂點P落在AD邊上(不與A、D重合),在AD上適當移動三角板頂點P:①能否使你的三角板兩直角邊分別通過點B與點C?若能,請你求出這時AP的長;若不能,請說明理由.②再次移動三角板位置,使三角板頂點P在AD上移動,直角邊PH始終通過點B,另一直角邊PF與DC的延長線交于點Q,與BC交于點E,能否使CE=2cm?若能,請你求出這時AP的長;若不能,請你說明理由.12、如圖所示,△ABC是等腰直角三角形,AB=AC,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,若BE=12,CF=5.求線段EF的長。
13、如圖,公路MN和公路PQ在點P處交匯,且∠QPN=30°,點A處有一所中學,AP=160m。假設拖拉機行駛時,周圍100m以內(nèi)會受到噪音的影響,那么拖拉機在公路MN上沿PN方向行駛時,學校是否會受到噪聲影響?請說明理由,如果受影響,已知拖拉機的速度為18km/h,那么學校受影響的時間為多少秒?
考點八:應用勾股定理解決勾股樹問題如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為5,則正方形A,B,C,D的面積的和為2、已知△ABC是邊長為1的等腰直角三角形,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,…,依此類推,第n個等腰直角三角形的斜邊長是.考點九、圖形問題1、如圖1,求該四邊形的面積2、如圖2,已知,在△ABC中,∠A=45°,AC=eq\r(\s\do1(),2),AB=eq\r(\s\do1(),3)+1,則邊BC的長為.3、某公司的大門如圖所示,其中四邊形ABCD是長方形,上部是以AD為直徑的半圓,其中AB=2.3m,BC=2m,現(xiàn)有一輛裝滿貨物的卡車,高為2.5m,寬為1.6m,問這輛卡車能否通過公司的大門?并說明你的理由.4、將一根長24㎝的筷子置于地面直徑為5㎝,高為12㎝的圓柱形水杯中,設筷子露在杯子外面的長為h㎝,則h的取值范圍。5、如圖,鐵路上A、B兩點相距25km,C、D為兩村莊,DA垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C、D兩村到E站的距離相等,則E站建在距A站多少千米處?考點十:其他圖形與直角三角形如圖是一塊地,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求這塊地的面積。考點十一:與展開圖有關的計算1、如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點A到頂點C’的最短距離.如圖一個圓柱,底圓周長6cm,高4cm,一只螞蟻沿外壁爬行,要從A點爬到B點,則最少要爬行cm3、國家電力總公司為了改善農(nóng)村用電電費過高的現(xiàn)狀,目前正在全國各地農(nóng)村進行電網(wǎng)改造,某地有四個村莊A、B、C、D,且正好位于一個正方形的四個頂點,現(xiàn)計劃在四個村莊聯(lián)合架設一條線路,他們設計了四種架設方案,如圖實線部分.請你幫助計算一下,哪種架設方案最省電線.
考點十二、航海問題1、一輪船以16海里/時的速度從A港向東北方向航行,另一艘船同時以12海里/時的速度從A港向西北方向航行,經(jīng)過1.5小時后,它們相距________海里.2、如圖,某貨船以24海里/時的速度將一批重要物資從A處運往正東方向的M處,在點A處測得某島C在北偏東60°的方向上。該貨船航行30分鐘到達B處,此時又測得該島在北偏東30°的方向上,已知在C島周圍9海里的區(qū)域內(nèi)有暗礁,若繼續(xù)向正東方向航行,該貨船有無暗礁危險?試說明理由。3、如圖,某沿海開放城市A接到臺風警報,在該市正南方向260km的B處有一臺風中心,沿BC方向以15km/h的速度向D移動,已知城市A到BC的距離AD=100km,那么臺風中心經(jīng)過多長時間從B點移到D點?如果在距臺風中心30km的圓形區(qū)域內(nèi)都將有受到臺風的破壞的危險,正在D點休閑的游人在接到臺風警報后的幾小時內(nèi)撤離才可脫離危險?考點十三、網(wǎng)格問題1、如圖,正方形網(wǎng)格中,每個小正方形的邊長為1,則網(wǎng)格上的三角形ABC中,邊長為無理數(shù)的邊數(shù)是()A.0B.1C.2D.32、如圖,正方形網(wǎng)格中的△ABC,若小方格邊長為1,則△ABC是()A.直角三角形B.銳角三角形C.鈍角三角形D.以上答案都不對3、如圖,小方格都是邊長為1的正方形,則四邊形ABCD的面積是()A.25B.12.5C.9D.8.5(圖1)(圖2)(圖3)4、如圖,正方形網(wǎng)格中的每個小正方形邊長都是1,每個小格的頂點叫格點,以格點為頂點分別按下列要求畫三角形:①使三角形的三邊長分別為3、、(在圖甲中畫一個即可);②使三角形為鈍角三角形且面積為4(在圖乙中畫一個即可).培優(yōu)題一、選擇題1.一等腰三角形底邊長為10cm,腰長為13cm,則腰上的高為()A.12cmB.C.D.2.已知直角三角形一個銳角60°,斜邊長為1,那么此直角三角形的周長是()A.B.3C.+2D.3、下列條件中,不能判斷一個三角形是直角三角形的是()A、三個角的比為1:2:3B、三條邊滿足=-C、三條邊的比為1:2:3D、三個角滿足關系∠B=∠C+∠A4、下列各組數(shù)中能作為直角三角形三邊長的是()①、9,12,15②、13,12,6③、9,12,14④12,16,20A、①④B、①②C、③④D、②④5、將一根24cm的筷子,置于底面直徑為15cm,高8cm的圓柱形水杯中,如圖所示,設筷子露在杯子外面的長度為hcm,則h的取值范圍是().A.h≤17cmB.h≥8cmC.15cm≤h≤16cmD.7cm≤h≤16cm6、△ABC中,AB=13,AC=15,高AD=12,則BC的長為()A.14B.14或4C.8D.4和87、△ABC中,∠C=90°,若AB=5,則++=()A.10B.15C.30D.508、直角三角形有一條直角邊的長為11,另外兩邊的長也是正整數(shù),則此三角形的周長()1A、120B、121C、132D、1239、一個三角形的三邊分別是m2+1,2m,m2-1,則此三角形是()A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形10、已知一個Rt△的兩邊長分別為3和4,則第三邊長的平方是()A.25 B.14 C.7 D.7或25二、解答題1、如圖(8),水池中離岸邊D點1.5米的C處,直立長著一根蘆葦,出水部分BC的長是0.5米,把蘆葦拉到岸邊,它的頂端B恰好落到D點,求水池的深度AC.2、如圖3,正方形ABCD中,E是BC邊上的中點,F(xiàn)是AB上一點,且,那么△DEF是直角三角形嗎?為什么?3、如圖4,已知長方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點E,將△ADE折疊使點D恰好落在BC邊上的點F。①求CE的長;②求折痕AE的長和重疊部分△AEF的面積4、有一個傳感器控制的燈,安裝在門上方,離地高4.5米的墻上,任何東西只要移至5米以內(nèi),燈就自動打開,一個身高1.5米的學生,要走到離門多遠的地方燈剛好打開?5、如圖,P是等邊三角形ABC內(nèi)一點,PA=2,PB=,PC=4,求△ABC的邊長.6、變式2、如圖,△ABC為等腰直角三角形,∠BAC=90°,E、F是BC上的點,且∠EAF=45°,試探究間的關系,并說明理由.7、如圖,矩形紙片ABCD的邊AB=10cm,BC=6cm,E為BC上一點,將矩形紙片沿AE折疊,點B恰好落在CD邊上的點G處,求BE的長.8、變式:如圖,AD是△ABC的中線,∠ADC=45°,把△ADC沿直線AD翻折,點C落在點C’的位置,BC=4,求BC’的長.9、如右圖1-19,壁虎在一座底面半徑為2米,高為4米的油罐的下底邊沿A處,它發(fā)現(xiàn)在自己的正上方油罐上邊緣的B處有一只害蟲,便決定捕捉這只害蟲,為了不引起害蟲的注意,它故意不走直線,而是繞著油罐,沿一條螺旋路線,從背后對害蟲進行突然襲擊.結果,壁虎的偷襲得到成功,獲得了一頓美餐.請問壁虎至少要爬行多少路程才能捕到害蟲?(π取3.14,結果保留1位小數(shù),可以用計算器計算)10、變式:如圖為一棱長為3cm的正方體,把所有面都分為9個小正方形,其邊長都是1cm,假設一只螞蟻每秒爬行2cm,則它從下地面A點沿表面爬行至右側面的B點,最少要花幾秒鐘?11.已知:如圖13,△ABC中,AB=10,BC=9,AC=17.求BC邊上的高.AB小河東北牧童小屋12.如下圖,一個牧童在小河的南4km的A處牧馬,而AB小河東北牧童小屋ABPC13、如圖,在△ABC中,AB=AC,P為BCABPC14、在正方形ABCD中,E是AD的三等分點,=,BE與EF垂直嗎?請說明理由。宜昌市邁克學習能力培訓學校業(yè)精于勤荒于嬉PAGEPAGE18編寫人:王老師15、有一塊直角三角形的綠地,量得兩直角邊分別為BC=6m,AC=8m,現(xiàn)在要將綠地擴充成等腰三角形,且擴充部分是以8m為直角邊的直角三角形,求擴充后等腰三角形綠地的周長。.(圖2,圖3備用)16、請閱讀下列材料:問題:現(xiàn)有5個邊長為1的正方形,排列形式如圖①,請把它們分割后拼接成一個新的正方形,要求:畫出分割線并在正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.
小東同學的做法是:設新正方形的邊長為x(x>0),依題意,割補前后圖形的面積相等,有x2=5,解得x=。由此可知新正方形得邊長等于兩個小正方形組成得矩形對角線得長,于是,畫出如圖②所示的分割線,拼出如圖③所示的新正方形.請你參考小東同學的做法,解決如下問題:
現(xiàn)有10個邊長為1的正方形,排列形式如圖④,請把它們分割后拼接成一個新的正方形,要求:在圖④中畫出分割線,并在圖⑤的正方形網(wǎng)格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.(說明:直接畫出圖形,不要求寫分析過程.)17、如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕。若AB=9,BC=3,。(1)求BF的長(2)求EF的長18、如圖△ABC中,∠ACB=90°,AC=12,BC=5,AN=AC,BM=BC,求MN的長度19、如圖所示,在Rt△ABC中,∠BAC=90°,AC=AB,∠DAE=45°,且BD=3,CE=4,求DE的長20、如圖,已知:,,于P.求證:.21、探索與研究(方法1)如圖:對任意的符合條件的直角三角形繞其銳角頂點旋轉(zhuǎn)90°所得,所以∠BAE=90°,且四邊形ACFD是一個正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和.根據(jù)圖示寫出證明勾股定理的過程;
(方法2)如圖是任意的符合條件的兩個全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
22、已知△ABC中,a2+b2+c2=10a+24b+26c-338,試判定△ABC的形狀,并說明你的理由.23.已知a、b、c是△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025企業(yè)租賃合同書標準版
- 2025汽車零部件采購合同(上游)
- 2025買賣合同范本參考
- 2025商業(yè)銀行的流動資金貸款合同范本
- 2025農(nóng)產(chǎn)品訂購合同范本下載
- 2025項目管理勞動合同模板
- 2025購房正式合同樣本
- 2025簡化版兼職勞動合同范本
- 2025標準商業(yè)權益轉(zhuǎn)讓合同范本
- 《藝術鑒賞之美》課件
- 小學語文《習作一形形色色的人》說課稿附板書課件
- 南明區(qū)第一實驗中學七年級下學期期中考試語文試題(含解析含聽力音頻)
- 第六單元 ( 單元作業(yè)設計) 部編版語文五年級下冊
- 臨時用電設備布線要求培訓課件
- 北師大版七年級數(shù)學下冊舉一反三 專題1.5 整式的混合運算與化簡求值專項訓練(30道)(舉一反三)(原卷版+解析)
- 欄桿計算書完整版本
- 星巴克消費者數(shù)據(jù)分析報告
- 實時數(shù)據(jù)采集系統(tǒng)方案
- PMC-651T配電變壓器保護測控裝置使用說明書V1.2
- 中國紅色革命故事英文版文章
- 《體育保健學》課件-第三章 運動性病癥
評論
0/150
提交評論