版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
遼寧省葫蘆島市第六中學(xué)2023-2024學(xué)年高二上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)圓上的動(dòng)點(diǎn)到直線的距離為,則的取值范圍是()A. B.C. D.2.過拋物線的焦點(diǎn)引斜率為1的直線,交拋物線于,兩點(diǎn),則()A.4 B.6C.8 D.103.三棱錐D-ABC中,AC=BD,且異面直線AC與BD所成角為60°,E、F分別是棱DC、AB的中點(diǎn),則EF和AC所成的角等于()A.30° B.30°或60°C.60° D.120°4.若圓與直線相切,則()A.3 B.或3C. D.或5.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點(diǎn),,則異面直線PC與BE所成角的余弦值為()A. B.C. D.6.已知命題,,則()A., B.,C., D.,7.過橢圓右焦點(diǎn)作x軸的垂線,并交C于A,B兩點(diǎn),直線l過C的左焦點(diǎn)和上頂點(diǎn).若以線段AB為直徑的圓與有2個(gè)公共點(diǎn),則C的離心率e的取值范圍是()A. B.C. D.8.已知為等腰直角三角形的直角頂點(diǎn),以為旋轉(zhuǎn)軸旋轉(zhuǎn)一周得到幾何體,是底面圓上的弦,為等邊三角形,則異面直線與所成角的余弦值為()A. B.C. D.9.已知雙曲線的一個(gè)焦點(diǎn)到它的一條漸近線的距離為,則()A.5 B.25C. D.10.已知雙曲線的離心率,點(diǎn)是拋物線上的一動(dòng)點(diǎn),到雙曲線的上焦點(diǎn)的距離與到直線的距離之和的最小值為,則該雙曲線的方程為A. B.C. D.11.已知f(x)是定義在R上的偶函數(shù),當(dāng)時(shí),,且f(-1)=0,則不等式的解集是()A. B.C. D.12.若橢圓的一個(gè)焦點(diǎn)為,則的值為()A.5 B.3C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),分別是橢圓C:的左、右焦點(diǎn),點(diǎn)M為橢圓C上一點(diǎn)且在第一象限,若為等腰三角形,則M的坐標(biāo)為___________14.美好人生路車站早上有6:40,6:50兩班開往A校的公交車,若李華同學(xué)在早上6:35至6:50之間隨機(jī)到達(dá)該車站,乘開往A校的公交車,公交車準(zhǔn)時(shí)發(fā)車,則他等車時(shí)間不超過5分鐘的概率為______15.生活中有這樣的經(jīng)驗(yàn):三腳架在不平的地面上也可以穩(wěn)固地支撐一部照相機(jī).這個(gè)經(jīng)驗(yàn)用我們所學(xué)的數(shù)學(xué)公理可以表述為___________.16.已知關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍是___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項(xiàng)和為,且.(1)求的通項(xiàng)公式;.(2)求數(shù)列的前n項(xiàng)和.18.(12分)已知數(shù)列的前n項(xiàng)和(1)證明是等比數(shù)列,并求的通項(xiàng)公式;(2)在和之間插入n個(gè)數(shù),使這個(gè)數(shù)組成一個(gè)公差為的等差數(shù)列,求數(shù)列的前n項(xiàng)和19.(12分)我們知道,裝同樣體積的液體容器中,如果容器的高度一樣,那么側(cè)面所需的材料就以圓柱形的容器最省.所以汽油桶等裝液體的容器大都是圓柱形的,某臥式油罐如圖1所示,它垂直于軸的截面如圖2所示,已知截面圓的半徑是1米,弧的長為米表示劣弧與弦所圍成陰影部分的面積.(1)請寫出函數(shù)表達(dá)式;(2)用求導(dǎo)的方法證明.20.(12分)已知等差數(shù)列的前項(xiàng)和為,,.(1)求的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,用符號(hào)表示不超過x的最大數(shù),當(dāng)時(shí),求的值.21.(12分)如圖,在四棱錐中,側(cè)面底面,是以為斜邊的等腰直角三角形,,,,點(diǎn)E為的中點(diǎn).(1)證明:平面;(2)求二面角的余弦值.22.(10分)如圖,在棱長為2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為棱BC,CD的中點(diǎn)(1)求證:D1F平面A1EC1;(2)求直線AC1與平面A1EC1所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】求出圓心到直線距離,再借助圓的性質(zhì)求出d的最大值與最小值即可.【詳解】圓的方程化為,圓心為,半徑為1,則圓心到直線的距離,即直線和圓相離,因此,圓上的動(dòng)點(diǎn)到直線的距離,有,,即,即的取值范圍是:.故選:C2、C【解析】由題意可得,的方程為,設(shè)、,聯(lián)立直線與拋物線方程可求,利用拋物線的定義計(jì)算即可求解.【詳解】由上可得:焦點(diǎn),直線的方程為,設(shè),,由,可得,則有,由拋物線的定義可得:,故選:C.3、B【解析】取AD中點(diǎn)為G,連接GF、GE,易知△EFG為等腰三角形,且∠EGF為異面直線AC和BD所成角或其補(bǔ)角,據(jù)此可求∠FEG大小,從而得EF和AC所成的角的大小【詳解】如圖,取AD中點(diǎn)為G,連接GF、GE,易知FG∥BD,GE∥AC,且FG=,GE=AC,故FG=GE,∠EGF為異面直線AC和BD所成角或其補(bǔ)角,故∠EGF=60°或120°故EF和AC所成角為∠FEG或其補(bǔ)角,當(dāng)∠EGF=60°時(shí),∠FEG=60°,當(dāng)∠EGF=120°時(shí),∠FEG=30°,∴EF和AC所成的角等于30°或60°故選:B4、B【解析】根據(jù)圓與與直線相切,利用圓心到直線的距離等于半徑求解.【詳解】圓的標(biāo)準(zhǔn)方程為:,則圓心為,半徑為,因?yàn)閳A與與直線相切,所以圓心到直線的距離等于半徑,即,解得或,故選:B5、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點(diǎn)F,G,連接DF,F(xiàn)G,DG,如圖,因?yàn)镋為AD的中點(diǎn),四邊形ABCD是菱形,所以,所以(其補(bǔ)角)是異面直線PC與BE所成的角因?yàn)榈酌鍭BCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B6、C【解析】利用全稱量詞命題的否定可得出結(jié)論.【詳解】命題為全稱量詞命題,該命題的否定為,.故選:C.7、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點(diǎn),右焦點(diǎn),上頂點(diǎn),,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A8、B【解析】設(shè),過點(diǎn)作的平行線,與平行的半徑交于點(diǎn),找出異面直線與所成角,然后通過解三角形可得出所求角的余弦值.【詳解】設(shè),過點(diǎn)作的平行線,與平行的半徑交于點(diǎn),則,,所以為異面直線與所成的角,在三角形中,,,所以.故選:B.【點(diǎn)睛】本題考查異面直線所成角余弦值的計(jì)算,一般通過平移直線的方法找到異面直線所成的角,考查計(jì)算能力,屬于中等題.9、B【解析】由漸近線方程得到,焦點(diǎn)坐標(biāo)為,漸近線方程為:,利用點(diǎn)到直線距離公式即得解【詳解】由題意,雙曲線故焦點(diǎn)坐標(biāo)為,漸近線方程為:焦點(diǎn)到它的一條漸近線的距離為:解得:故選:B10、B【解析】先根據(jù)離心率得,再根據(jù)拋物線定義得最小值為(為拋物線焦點(diǎn)),解得,即得結(jié)果.【詳解】因?yàn)殡p曲線的離心率,所以,設(shè)為拋物線焦點(diǎn),則,拋物線準(zhǔn)線方程為,因此到雙曲線的上焦點(diǎn)的距離與到直線的距離之和等于,因?yàn)椋?,即,即雙曲線的方程為,選B.【點(diǎn)睛】本題考查雙曲線方程、離心率以及拋物線定義,考查基本分析求解能力,屬中檔題.11、D【解析】根據(jù)題意可知,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞增,再結(jié)合函數(shù)f(x)的奇偶性得到函數(shù)的奇偶性,并根據(jù)奇偶性得到單調(diào)性,進(jìn)而解得答案.【詳解】由題意,當(dāng)時(shí),,則函數(shù)在上單調(diào)遞增,而f(x)是定義在R上的偶函數(shù),容易判斷是定義在上的奇函數(shù),于是在上單調(diào)遞增,而f(-1)=0,則.于是當(dāng)時(shí),.故選:D.12、B【解析】由題意判斷橢圓焦點(diǎn)在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點(diǎn)在軸上,則,從而,解得:.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先計(jì)算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標(biāo)為,代入橢圓C:求出.【詳解】橢圓C:,所以.因?yàn)镸在橢圓上,.因?yàn)镸在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過M作MA⊥x軸于A,則所以,即M的橫坐標(biāo)為.因?yàn)镸為橢圓C:上一點(diǎn)且在第一象限,所以,解得:所以M的坐標(biāo)為.故答案為:14、【解析】根據(jù)題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達(dá),進(jìn)而根據(jù)幾何概型求概率的方法求得答案.【詳解】由題意,李華等車不超過5分鐘,則他必須在6:35-6:40或者6:45-6:50到達(dá),則所求概率.故答案為:.15、不在同一直線上的三點(diǎn)確定一個(gè)平面【解析】根據(jù)題意結(jié)合平面公理2即可得出答案.【詳解】解:根據(jù)題意可知,三腳架與地面接觸的三個(gè)點(diǎn)不在同一直線上,則為數(shù)學(xué)中的平面公理2:不在同一直線上的三點(diǎn)確定一個(gè)平面.故答案為:不在同一直線上的三點(diǎn)確定一個(gè)平面.16、【解析】參變分離,可得,設(shè),求導(dǎo)分析單調(diào)性,可得,即得解【詳解】因?yàn)椋圆坏仁娇苫癁?,設(shè),則,設(shè),由于故在上單調(diào)遞增,且,則當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增,所以,則,即.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)給定條件結(jié)合當(dāng)時(shí),探求數(shù)列的性質(zhì)即可計(jì)算作答.(2)由(1)求出,再利用錯(cuò)位相減法計(jì)算作答.小問1詳解】依題意,當(dāng)時(shí),因?yàn)?,則,當(dāng)時(shí),,解得,于是得數(shù)列是以1為首項(xiàng),為公比的等比數(shù)列,則,所以的通項(xiàng)公式是.【小問2詳解】由(1)可知,,則,因此,兩式相減得:,于是得,所以數(shù)列的前n項(xiàng)和.18、(1)證明見解析,(2)【解析】(1)利用及已知即可得到證明,從而求得通項(xiàng)公式;(2)先求出通項(xiàng),再利用錯(cuò)位相減法求和即可.【小問1詳解】因,當(dāng)時(shí),,所以,當(dāng)時(shí),,又,解得,所以是以2為首項(xiàng),2為公比的等比數(shù)列,故【小問2詳解】因?yàn)椋?,,,,所以,所?9、(1),(2)證明見解析【解析】(1)由弧長公式得,根據(jù)即可求解;(2)利用導(dǎo)數(shù)判斷出在上單調(diào)遞增,即可證明.【小問1詳解】由弧長公式得,于是,【小問2詳解】cos,顯然在上單調(diào)遞增,于是.20、(1)(2)9【解析】(1)首先根據(jù)已知條件分別求出的首項(xiàng)和公差,然后利用等差數(shù)列的通項(xiàng)公式求解即可;(2)首先利用等差數(shù)列求和公式求出,然后利用裂項(xiàng)相消法和分組求和法求出,進(jìn)而可求出的通項(xiàng)公式,最后利用等差數(shù)列求和公式求解即可.【小問1詳解】不妨設(shè)等差數(shù)列的公差為,故,,解得,,從而,即的通項(xiàng)公式為.【小問2詳解】由題意可知,,所以,故,因?yàn)楫?dāng)時(shí),;當(dāng)時(shí),,所以,由可知,,即,解得,即值為9.21、(1)見解析;(2)【解析】(1)用線線平行證明線面平行,∴在平面PCD內(nèi)作BE的平行線即可;(2)求二面角的大小,可以用空間向量進(jìn)行求解,根據(jù)已知條件,以AD中點(diǎn)O為原點(diǎn),OB,AD,OP分別為x、y、z軸建立坐標(biāo)系﹒【小問1詳解】如圖,取PD中點(diǎn)F,連接EF,F(xiàn)C﹒∵E是AP中點(diǎn),∴EFAD,由題知BCAD,∴BCEF,∴BCFE是平行四邊形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小問2詳解】取AD中點(diǎn)O,連接OP,OB,∵是以為斜邊等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD兩兩垂直,故以O(shè)原
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國開瓶針行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年中國印膠帽子市場調(diào)查研究報(bào)告
- 二零二五年度事業(yè)單位聘用合同解除與員工離職后離職證明協(xié)議
- 二零二四年垃圾焚燒發(fā)電廠土方清運(yùn)與施工合同3篇
- 2025便利店智能支付系統(tǒng)接入合同3篇
- 二零二四年度專業(yè)旅游用車租賃服務(wù)合同范本3篇
- 2025年水產(chǎn)養(yǎng)殖場養(yǎng)殖品種改良與育種合作合同3篇
- 重慶速錄公司2025年度知識(shí)產(chǎn)權(quán)保護(hù)合同2篇
- 2025年度綠色能源項(xiàng)目信息化建設(shè)咨詢合同范本2篇
- 2024版機(jī)電設(shè)備安裝合同范本
- 肝臟腫瘤護(hù)理查房
- 護(hù)士工作壓力管理護(hù)理工作中的壓力應(yīng)對策略
- 2023年日語考試:大學(xué)日語六級(jí)真題模擬匯編(共479題)
- 皮帶拆除安全技術(shù)措施
- ISO9001(2015版)質(zhì)量體系標(biāo)準(zhǔn)講解
- 《培訓(xùn)資料緊固》課件
- 黑龍江省政府采購評(píng)標(biāo)專家考試題
- 成品煙道安裝施工方案
- 醫(yī)療免責(zé)協(xié)議書范本
- 2023山東春季高考數(shù)學(xué)真題(含答案)
- 2022年初中歷史課程標(biāo)準(zhǔn)電子版
評(píng)論
0/150
提交評(píng)論