內(nèi)蒙古巴彥淖爾市烏拉特前旗一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第1頁
內(nèi)蒙古巴彥淖爾市烏拉特前旗一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第2頁
內(nèi)蒙古巴彥淖爾市烏拉特前旗一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第3頁
內(nèi)蒙古巴彥淖爾市烏拉特前旗一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第4頁
內(nèi)蒙古巴彥淖爾市烏拉特前旗一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

內(nèi)蒙古巴彥淖爾市烏拉特前旗一中2023-2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末經(jīng)典試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若用面積為48的矩形ABCD截某圓錐得到一個橢圓,且該橢圓與矩形ABCD的四邊都相切.設(shè)橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.2.設(shè)函數(shù),則和的值分別為()A.、 B.、C.、 D.、3.平面上動點(diǎn)到點(diǎn)的距離與它到直線的距離之比為,則動點(diǎn)的軌跡是()A.雙曲線 B.拋物線C.橢圓 D.圓4.丹麥數(shù)學(xué)家琴生(Jensen)是19世紀(jì)對數(shù)學(xué)分析作出卓越貢獻(xiàn)的巨人,特別是在函數(shù)的凸凹性與不等式方面留下了很多寶貴的成果.設(shè)函數(shù)在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)的導(dǎo)函數(shù)為,在區(qū)間內(nèi)恒成立,則稱函數(shù)在區(qū)間內(nèi)為“凸函數(shù)”,則下列函數(shù)在其定義域內(nèi)是“凸函數(shù)”的是()A. B.C. D.5.求點(diǎn)關(guān)于x軸的對稱點(diǎn)的坐標(biāo)為()A. B.C. D.6.已知向量,,若,則()A.1 B.C. D.27.在長方體中,()A. B.C. D.8.在空間直角坐標(biāo)系中,已知,,則MN的中點(diǎn)P到坐標(biāo)原點(diǎn)О的距離為()A. B.C.2 D.39.棱長為1的正四面體的表面積是()A. B.C. D.10.已知橢圓C的焦點(diǎn)為,過F2的直線與C交于A,B兩點(diǎn).若,,則C的方程為A. B.C. D.11.如圖所示,某空間幾何體的三視圖是3個全等的等腰直角三角形,且直角邊長為2,則該空間幾何體的體積為()A. B.C. D.12.設(shè),,則與的等比中項(xiàng)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.用1,2,3,4排成的無重復(fù)數(shù)字的四位數(shù)中,其中1和2不能相鄰的四位數(shù)的個數(shù)為___________(用數(shù)字作答).14.已知曲線在點(diǎn)處的切線與曲線相切,則______.15.若把英語單詞“”的字母順序?qū)戝e了,則可能出現(xiàn)的錯誤有______種16.若方程表示焦點(diǎn)在y軸上的雙曲線,則實(shí)數(shù)k的取值范圍是______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(…是自然對數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點(diǎn)的個數(shù).18.(12分)已知過點(diǎn)的圓的圓心M在直線上,且y軸被該圓截得的弦長為4(1)求圓M的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn),若點(diǎn)P為x軸上一動點(diǎn),求的最小值,并寫出取得最小值時點(diǎn)P的坐標(biāo)19.(12分)已知等差數(shù)列的前項(xiàng)和為,數(shù)列是等比數(shù)列,,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)若,設(shè)數(shù)列的前項(xiàng)和為,求.20.(12分)記為等差數(shù)列的前項(xiàng)和,已知,.(1)求的通項(xiàng)公式;(2)求,并求的最小值.21.(12分)已知函數(shù)(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,若關(guān)于x的不等式恒成立,試求a的取值范圍22.(10分)如圖,在棱長為2的正方體中,,分別為線段,的中點(diǎn).(1)求點(diǎn)到平面的距離;(2)求平面與平面夾角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項(xiàng)判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長分別為,由矩形面積為48,得,對于選項(xiàng)B,D由于,不符合條件,不正確.對于選項(xiàng)A,,滿足題意.對于選項(xiàng)C,不正確.故選:A.2、D【解析】求得,即可求得、的值.【詳解】,則,則,故,.故選:D.3、A【解析】設(shè)點(diǎn),利用距離公式化簡可得出點(diǎn)的軌跡方程,即可得出動點(diǎn)的軌跡圖形.【詳解】設(shè)點(diǎn),由題意可得,化簡可得,即,曲線為反比例函數(shù)圖象,故動點(diǎn)的軌跡是雙曲線.故選:A.4、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)函數(shù)公式求各函數(shù)二階導(dǎo)函數(shù),判斷其在定義域上是否恒有,即可知正確選項(xiàng).【詳解】A:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;B:,則,故是“凸函數(shù)”;C:,則,故不是“凸函數(shù)”;D:,則,顯然定義域內(nèi)有正有負(fù),故不是“凸函數(shù)”;故選:B5、D【解析】根據(jù)點(diǎn)關(guān)于坐標(biāo)軸的對稱點(diǎn)特征,直接寫出即可.【詳解】A點(diǎn)關(guān)于x軸對稱點(diǎn),橫坐標(biāo)不變,縱坐標(biāo)與豎坐標(biāo)為原坐標(biāo)的相反數(shù),故點(diǎn)的坐標(biāo)為,故選:D6、B【解析】由向量平行,先求出的值,再由模長公式求解模長.【詳解】由,則,即則,所以則故選:B7、D【解析】根據(jù)向量的運(yùn)算法則得到,帶入化簡得到答案.【詳解】在長方體中,易知,所以.故選:D.8、A【解析】利用中點(diǎn)坐標(biāo)公式及空間中兩點(diǎn)之間的距離公式可得解.【詳解】,,由中點(diǎn)坐標(biāo)公式,得,所以.故選:A9、D【解析】采用數(shù)形結(jié)合,根據(jù)邊長,結(jié)合正四面體的概念,計算出正三角形的面積,可得結(jié)果【詳解】如圖由正四面體的概念可知,其四個面均是全等的等邊三角形,由其棱長為1,所以,所以可知:正四面體的表面積為,故選:D10、B【解析】由已知可設(shè),則,得,在中求得,再在中,由余弦定理得,從而可求解.【詳解】法一:如圖,由已知可設(shè),則,由橢圓的定義有.在中,由余弦定理推論得.在中,由余弦定理得,解得所求橢圓方程為,故選B法二:由已知可設(shè),則,由橢圓的定義有.在和中,由余弦定理得,又互補(bǔ),,兩式消去,得,解得.所求橢圓方程為,故選B【點(diǎn)睛】本題考查橢圓標(biāo)準(zhǔn)方程及其簡單性質(zhì),考查數(shù)形結(jié)合思想、轉(zhuǎn)化與化歸的能力,很好的落實(shí)了直觀想象、邏輯推理等數(shù)學(xué)素養(yǎng)11、A【解析】在該空間幾何體的直觀圖中去求其體積即可.【詳解】依托棱長為2的正方體得到該空間幾何體的直觀圖為三棱錐則故選:A12、C【解析】利用等比中項(xiàng)的定義可求得結(jié)果.【詳解】由題意可知,與的等比中項(xiàng)為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用插空法計算出正確答案.【詳解】先排,形成個空位,然后將排入,所以符合題意的四位數(shù)的個數(shù)為.故答案為:14、2或10【解析】求出在處的導(dǎo)數(shù),得出切線方程,與聯(lián)立,利用可求.【詳解】令,,則,,可得曲線在點(diǎn)處的切線方程為.聯(lián)立,得,,解得或.故答案為:2或10.15、23【解析】先計算該單詞所有字母能夠組成的所有排列情況,然后減去正確的,即是可能出現(xiàn)錯誤的情況.【詳解】因?yàn)椤啊彼膫€字母組成的全排列共有(種)結(jié)果,其中只有排列“”是正確的,其余全是錯誤的,故可能出現(xiàn)錯誤的共有(種).故答案為:23.16、【解析】由題可得,即求.【詳解】因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的雙曲線,則,解得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)當(dāng)時,的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時,的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時函數(shù)沒有零點(diǎn);或時函數(shù)有且只有一個零點(diǎn);時,函數(shù)有兩個零點(diǎn).【解析】(1)先對函數(shù)求導(dǎo),然后分和兩種情況判斷導(dǎo)函數(shù)正負(fù),求其單調(diào)區(qū)間;(2)由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,從而可得答案【詳解】(1)因?yàn)?,所以,?dāng)時,恒成立,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時,令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是函數(shù)的零點(diǎn),由,得.令,則.或時,,時,,所以在和上都是減函數(shù),在上是增函數(shù),時取極小值,又當(dāng)時,.所以時,關(guān)于的方程無解,或時關(guān)于的方程只有一個解,時,關(guān)于的方程有兩個不同解.因此,時函數(shù)沒有零點(diǎn),或時函數(shù)有且只有一個零點(diǎn),時,函數(shù)有兩個零點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)判斷函數(shù)的零點(diǎn),解題的關(guān)鍵是由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,考查數(shù)形結(jié)合的思想,屬于中檔題18、(1)(2),【解析】(1)用待定系數(shù)法設(shè)出圓心,根據(jù)圓過點(diǎn)和弦長列出方程求解即可;(2)當(dāng)三點(diǎn)共線時有最小值,求出直線MN的方程,令y=0即可.【小問1詳解】由題意可設(shè)圓心,因?yàn)閥軸被圓M截得的弦長為4,所以,又,則,化簡得,解得,則圓心,半徑,所以圓M的標(biāo)準(zhǔn)方程為【小問2詳解】點(diǎn)關(guān)于x軸的對稱點(diǎn)為,則,當(dāng)且僅當(dāng)M,P,三點(diǎn)共線時等號成立,因?yàn)?,則直線的方程為,即,令,得,則19、(1),;(2).【解析】(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,根據(jù)題意列出表達(dá)式,解出公比和公差,再根據(jù)等差數(shù)等比列的通項(xiàng)公式的求法求出通項(xiàng)即可;(2)根據(jù)第一問得到前n項(xiàng)和,數(shù)列,分組求和即可.解析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,∵,,,,∴,∴,,∴,.(2)由(1)知,,∴,∴.20、(1)(2),【解析】(1)由,計算出公差,再寫出通項(xiàng)公式即可.(2)直接用公式寫出,配方后求出最小值.【小問1詳解】設(shè)公差為,由得,從而,即又,【小問2詳解】由(1)的結(jié)論,,,當(dāng)時,取得最小值.21、(1)的減區(qū)間為,增區(qū)間為(2)【解析】(1)利用導(dǎo)數(shù)求得的單調(diào)區(qū)間.(2)利用分離參數(shù)法,結(jié)合構(gòu)造函數(shù)法以及導(dǎo)數(shù)求得的取值范圍.【小問1詳解】當(dāng)時,,,所以在區(qū)間遞減;在區(qū)間遞增.所以的減區(qū)間為,增區(qū)間為.【小問2詳解】,恒成立.構(gòu)造函數(shù),,,構(gòu)造函數(shù),,所以在上遞增,,所以在上成立,所以,所以,即的取值范圍是.22、(1);(2).【解析】(1)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論