![冪函數(shù)講義 高一上學(xué)期數(shù)學(xué)人教A版(2019)必修第一冊_第1頁](http://file4.renrendoc.com/view/e0413951245ed1d205daac21a2246830/e0413951245ed1d205daac21a22468301.gif)
![冪函數(shù)講義 高一上學(xué)期數(shù)學(xué)人教A版(2019)必修第一冊_第2頁](http://file4.renrendoc.com/view/e0413951245ed1d205daac21a2246830/e0413951245ed1d205daac21a22468302.gif)
![冪函數(shù)講義 高一上學(xué)期數(shù)學(xué)人教A版(2019)必修第一冊_第3頁](http://file4.renrendoc.com/view/e0413951245ed1d205daac21a2246830/e0413951245ed1d205daac21a22468303.gif)
![冪函數(shù)講義 高一上學(xué)期數(shù)學(xué)人教A版(2019)必修第一冊_第4頁](http://file4.renrendoc.com/view/e0413951245ed1d205daac21a2246830/e0413951245ed1d205daac21a22468304.gif)
![冪函數(shù)講義 高一上學(xué)期數(shù)學(xué)人教A版(2019)必修第一冊_第5頁](http://file4.renrendoc.com/view/e0413951245ed1d205daac21a2246830/e0413951245ed1d205daac21a22468305.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
.3冪函數(shù)1、冪函數(shù)的定義:一般地,函數(shù)叫做冪函數(shù),其中是自變量,是常數(shù)。2、冪函數(shù)的特征:①的系數(shù)為;②的底數(shù)是自變量;③的指數(shù)為常數(shù)。同時滿足以上三個條件才是冪函數(shù)。3、常見的冪函數(shù)圖像及性質(zhì):函數(shù)圖象定義域值域奇偶性奇偶奇非奇非偶奇單調(diào)性在上單調(diào)遞增在上單調(diào)遞減,在上單調(diào)遞增在上單調(diào)遞增在上單調(diào)遞增在和上單調(diào)遞減4、特定冪函數(shù)的性質(zhì):①函數(shù),,,和的圖像都通過點(diǎn)(,);②函數(shù),,是奇函數(shù),函數(shù)是偶函數(shù);③在區(qū)間(,)上,函數(shù),,,單調(diào)遞增,函數(shù)是單調(diào)遞減。④在第一象限內(nèi),函數(shù)的圖像向上與軸無限接近,向右與軸無限接近。⑤在(,)上,冪函數(shù)中越大,函數(shù)圖像越靠近軸;在(,)上冪函數(shù)中越大,函數(shù)圖像越遠(yuǎn)離軸。5、單調(diào)區(qū)間:當(dāng)為整數(shù)時,的正負(fù)性和奇偶性決定了函數(shù)的單調(diào)性。①當(dāng)為正奇數(shù)時,圖像在定義域?yàn)閮?nèi)單調(diào)遞增;②當(dāng)為正偶數(shù)時,圖像在定義域?yàn)榈诙笙迌?nèi)單調(diào)遞減,在第一象限內(nèi)單調(diào)遞增;③當(dāng)為負(fù)奇數(shù)時,圖像在第一三象限各象限內(nèi)單調(diào)遞減(但不能說在定義域內(nèi)單調(diào)遞減);④當(dāng)為負(fù)偶數(shù)時,圖像在第二象限上單調(diào)遞增,在第一象限內(nèi)單調(diào)遞減。⑤,在第一象限內(nèi)遞增;,在第一象限內(nèi)遞減。6、冪函數(shù)圖象的特點(diǎn)、性質(zhì):①如果冪函數(shù)的圖象與坐標(biāo)軸相交,那么交點(diǎn)一定是原點(diǎn)。②冪函數(shù)的圖象最多只能經(jīng)過兩個象限內(nèi);冪函數(shù)的圖象一定會經(jīng)過第一象限,一定不會經(jīng)過第四象限,是否經(jīng)過第二、三象限,要看函數(shù)的奇偶性。冪函數(shù)是偶函數(shù)時,圖象分布在第一、二象限(圖象關(guān)于軸對稱);冪函數(shù)是奇函數(shù)時,圖象分布在第一、三象限(圖象關(guān)于原點(diǎn)對稱);冪函數(shù)是非奇非偶函數(shù)時,圖象只分布在第一象限。③過定點(diǎn):所有的冪函數(shù)在(,)都有定義,并且圖象都通過點(diǎn)(,)。④單調(diào)性:如果,則冪函數(shù)的圖象過原點(diǎn),并且在(,)上為增函數(shù)。如果,則冪函數(shù)的圖象在(,)上為減函數(shù),在第一象限內(nèi),圖象無限接近軸與軸。⑤奇偶性:當(dāng)為奇數(shù)時,冪函數(shù)為奇函數(shù);當(dāng)為偶數(shù)時,冪函數(shù)為偶函數(shù)。當(dāng)(其中互質(zhì),和),若為奇數(shù)為奇數(shù),則是奇函數(shù),若為奇數(shù)為偶數(shù),則是偶函數(shù),若為偶數(shù)為奇數(shù),則是非奇非偶函數(shù)。⑥圖象特征:冪函數(shù),(,),當(dāng)時,若,其圖象在直線下方,若,其圖象在直線上方;當(dāng)時,若,其圖象在直線上方,若,其圖象在直線下方。⑦在第一象限,作直線,它同各冪函數(shù)圖象相交,按交點(diǎn)從下到上的順序,冪指數(shù)按從小到大的順序排列。7、分?jǐn)?shù)指數(shù)冪:我們規(guī)定,正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是且。我們規(guī)定,正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是且。我們規(guī)定,0的正分?jǐn)?shù)指數(shù)冪等于0;0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。【題型1】判斷函數(shù)是否是冪函數(shù)A根據(jù)函數(shù)是冪函數(shù)求參數(shù)值1.下列函數(shù)是冪函數(shù)的是()A.y=2x2 B.y=1x2 C.y=﹣x﹣1 D.2.下列函數(shù)中,y=1x3,y=2x+1,y=x3+xA.1 B.2 C.3 D.43.現(xiàn)有下列函數(shù):①y=x3;②y=(12)x;③y=4x2;④y=x5+1;⑤y=(x﹣1)2;⑥y=x;⑦y=aA.1 B.2 C.3 D.44.若函數(shù)f(x)=(m﹣1)xm+1是冪函數(shù),則實(shí)數(shù)m=()A.0 B.1 C.2 D.1或25.已知函數(shù)f(x)=(a2﹣a﹣1)x1a?2為冪函數(shù),則實(shí)數(shù)A.﹣1或2 B.﹣2或1 C.﹣1 D.1【題型2】求冪函數(shù)的解析式1.已知冪函數(shù)f(x)的圖象過點(diǎn)(2,16),則f(x)=()A.x4 B.x3 C.x6 D.x52.若冪函數(shù)f(x)=xa的圖象經(jīng)過點(diǎn)(2,316),則函數(shù)fA.f(x)=x43 C.f(x)=x?43.已知點(diǎn)(a3,2)在冪函數(shù)f(x)=(a﹣1)xb的圖象上,則()A.f(x)=x﹣1 B.f(x)=2xC.f(x)=x3 D.f(x)=4.已知點(diǎn)(m,116)在冪函數(shù)f(x)=(m﹣1)xnA.f(x)=x﹣2 B.f(x)=x﹣4 C.f(x)=x2 D.f(x)=x45.已知冪函數(shù)f(x)=(m2﹣2m﹣2)xm﹣2的圖象經(jīng)過原點(diǎn),則m=()A.﹣1 B.1 C.3 D.2【題型3】求冪函數(shù)的值1.已知冪函數(shù)y=f(x)的圖象過點(diǎn)(4,2),則f(16)=()A.18 B.14 C.42.若冪函數(shù)f(x)的圖象過點(diǎn)(2,2),則A.2 B.?2 C.2 3.冪函數(shù)f(x)=xα的圖象過點(diǎn)(12,A.2 B.2 C.12 D.4.若f(x)是冪函數(shù),且滿足f(4)f(2)=4,則fA.﹣4 B.4 C.?12 5.已知冪函數(shù)f(x)滿足f(6)f(2)=4,則f(A.2 B.14 C.?1【題型4】求冪函數(shù)的定義域1.已知冪函數(shù)f(x)的圖象過點(diǎn)(2,2),則f(A.R B.(0,+∞) C.[0,+∞) D.(﹣∞,0)∪(0,+∞)2.若冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,19A.{x|x∈R,x>0} B.{x|x∈R,x<0} C.{x|x∈R,且x≠0} D.R3.下列冪函數(shù)中,定義域?yàn)镽的冪函數(shù)是()A.y=x34 B.y=x?12 C.y4.若冪函數(shù)y=(m2?2m?2)x?m2+m+3的定義域?yàn)閧A.﹣1≤m≤3 B.m=﹣1或m=3 C.m=﹣1 D.m=35.已知冪函數(shù)y=﹣3αxα,則此函數(shù)的定義域?yàn)椋绢}型5】求冪函數(shù)的值域1.已知冪函數(shù)f(x)=xα的圖像過點(diǎn)(8,4),則f(x)=xA.?∞,0 B.?∞,0C.0,+∞ D.0,+∞2.下列函數(shù)中,值域?yàn)?0,+∞)的是(
)A.y=x2 B.y=2x C.3.下列函數(shù)中,值域?yàn)?,+∞的是(
A.fx=xC.fx=14.冪函數(shù)y=fx的圖象過點(diǎn)2,2,則函數(shù)y=x?fxA.?∞,+∞ B.?∞,15.函數(shù)y=x23+2x【題型6】冪函數(shù)的圖象1.冪函數(shù)y=f(x)的圖象過點(diǎn)(4,2),則冪函數(shù)y=f(x)的圖象是()A. B. C. D.2.函數(shù)y=xA. B. C. D.3.函數(shù)y=xA.B.C.D.4.如圖是冪函數(shù)y=xα的部分圖像,已知α分別取13、3、﹣3、?13這四個值,則與曲線C1、C2、C3、C4A.3,13,?13,﹣3 B.﹣3,?1C.?13,3,﹣3,13 D.3,5.冪函數(shù)y=x﹣1及直線y=x,y=1,x=1將平面直角坐標(biāo)系的第一象限分成八個“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如圖所示),則冪函數(shù)y=xA.①,⑦ B.④,⑧ C.③,⑦ D.①,⑤【題型7】冪函數(shù)的單調(diào)性1.下列冪函數(shù)在區(qū)間(0,+∞)內(nèi)單調(diào)遞減的是()A.y=x B.y=x2 C.y=x3 D.y=x﹣12.已知冪函數(shù)y=xα的圖象過點(diǎn)(1A.(﹣∞,+∞) B.(﹣∞,0) C.[0,+∞) D.(0,+∞)3.若冪函數(shù)f(x)=(2m2﹣3m﹣1)xm在(0,+∞)上單調(diào)遞減,則m=()A.2 B.12 C.?14.已知函數(shù)f(x)=(m2?m?1)A.2 B.﹣1 C.4 D.2或﹣15.已知冪函數(shù)f(x)為偶函數(shù),且在(0,+∞)上單調(diào)遞減,則f(x)的解析式可以是()A.f(x)=x12 B.f(x)=x23 C.f(x)=x﹣2 D.【題型8】冪函數(shù)的奇偶性1.下列函數(shù)既是冪函數(shù)又是奇函數(shù)的是()A.y=3x B.y=1x2 C.y=22.冪函數(shù)y=f(x)為偶函數(shù),且在(0,+∞)上為減函數(shù)的是()A.f(x)=x﹣2 B.f(x)=x C.f(x)=x2 D.f(x)=x3.設(shè)α∈{?1,1,12,3},則使函數(shù)y=xα的定義域?yàn)镽A.﹣1,1,3 B.12,1 C.﹣1,3 4.冪函數(shù)y=x2mA.0 B.1 C.0或1 D.25.冪函數(shù)f(x)=(m2+5m﹣5)xm2?3m(m∈Z)是偶函數(shù),且在(0,+∞)上是減函數(shù),則A.﹣6 B.1 C.6 D.1或﹣6【題型9】由冪函數(shù)的單調(diào)性比較大小1.已知a=243,b=A.b<a<c B.a(chǎn)<b<c C.b<c<a D.c<a<b2.設(shè)a=1.2A.c<a<b B.a(chǎn)<c<b C.b<a<c D.c<b<a3.若a=(12)23,b=(1A.a(chǎn)<b<c B.c<a<b C.b<c<a D.b<a<c4.已知a=243,b=A.b<a<c B.a(chǎn)<b<c C.b<c<a D.c<a<b5.若a=20.4,b=30.3,c=40.2,則()A.a(chǎn)>b>c B.c>b>a C.c=a>b D.b>a=c當(dāng)堂檢測一.選擇題(共8小題)1.冪函數(shù)y=f(x)經(jīng)過點(diǎn)(3,3),則f(x)是()A.偶函數(shù),且在(0,+∞)上是增函數(shù) B.偶函數(shù),且在(0,+∞)上是減函數(shù) C.奇函數(shù),且在(0,+∞)是減函數(shù) D.非奇非偶函數(shù),且在(0,+∞)上是增函數(shù)2.函數(shù)f(x)=(m2﹣m﹣1)xm是冪函數(shù),且在x∈(0,+∞)上為增函數(shù),則實(shí)數(shù)m的值是()A.﹣1 B.2 C.3 D.﹣1或2 3.y=xA.增函數(shù)且是奇函數(shù) B.增函數(shù)且是偶函數(shù) C.減函數(shù)且是奇函數(shù) D.減函數(shù)且是偶函數(shù)4.冪函數(shù)y=(m2﹣m﹣1)x﹣5m﹣3在x∈(0,+∞)時為減函數(shù),則m=()A.﹣1 B.2 C.0或1 D.﹣1或25.若f(x)是冪函數(shù),且滿足f(4)f(2)=3,則A.3 B.﹣3 C.13 D.6.已知冪函數(shù)f(x)=xm﹣2(m∈N)的圖象關(guān)于原點(diǎn)對稱,且在(0,+∞)上是減函數(shù),若(a+1)?m2A.(﹣1,3)B.(23,32)C.(﹣1,327.設(shè)a=(34)12,b=(4A.c<a<b B.c<b<a C.a(chǎn)<c<b D.b<c<a8.函數(shù)f(x)=(m2?m?1)xm2+m?3是冪函數(shù),對任意x1,x2∈(0,+∞),且x1≠x2,滿足f(x1)?f(x2)x1?x2>0,若aA.恒大于0 B.恒小于0 C.等于0 D.無法判斷二.多選題(共4小題)(多選)9.已知冪函數(shù)f(x)=xmn(m,n∈N?,m,A.當(dāng)m,n都是奇數(shù)時,冪函數(shù)f(x)是奇函數(shù) B.當(dāng)m是偶數(shù),n是奇數(shù)時,冪函數(shù)f(x)是偶函數(shù) C.當(dāng)m是奇數(shù),n是偶數(shù)時,冪函數(shù)f(x)是偶函數(shù) D.當(dāng)0<mn<1時,冪函數(shù)f(多選)10.已知函數(shù)f(x)=xa的圖象經(jīng)過點(diǎn)(1A.f(x)的圖象經(jīng)過點(diǎn)(3,9) B.f(x)的圖象關(guān)于y軸對稱 C.f(x)在(0,+∞)上單調(diào)遞減 D.f(x)在(0,+∞)內(nèi)的值域?yàn)椋?,+∞)(多選)11.已知冪函數(shù)f(x)=(m+9A.f(?32)=116 B.f(x)的定義域是C.f(x)是偶函數(shù) D.不等式f(x﹣1)≥f(2)的解集是[﹣1,1)∪(1,3](多選)12.已知函數(shù)f(x)=(m2﹣m﹣1)xm2+m?3是冪函數(shù),對任意x1,x2∈(0,+∞),且x1≠x2,滿足f(x1)?f(x2)x1?x2>0.若A.a(chǎn)+b>0,ab<0 B.a(chǎn)+b<0,ab>0 C.a(chǎn)+b<0,ab<0 D.以上都可能三.填空題(共4小題)13.若冪函數(shù)y=(m2﹣m﹣1)xm為偶函數(shù),則m=.14.已知冪函數(shù)f(x)=(m2﹣2m﹣2)xm滿足f(2)<f(3),則m=.15.已知冪函數(shù)f(x)=(m2﹣3m+3)xm+1的圖象關(guān)于原點(diǎn)對稱,則滿足(a+1)m>(3﹣2a)m成立的實(shí)數(shù)a的取值范圍為.16.已知冪函數(shù)f(x)=xα(α為常數(shù))過點(diǎn)(4,2),則f(a﹣3)+f(5﹣a)的最大值為.四.解答題(共6小題)17.已知冪函數(shù)f(x)=(m2﹣5m+7)xm﹣1為偶函數(shù).(1)求f(x)的解析式;(2)若g(x)=f(x)﹣ax﹣3在[1,3]上不是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.18.若冪函數(shù)f(x)=(2m2+m﹣2)x2m+1在其定義域上是增函數(shù).(1)求f(x)的解析式;(2)若f(2﹣a)<f(a2﹣4),求a的取值范圍.19.已知冪函數(shù)f(x)=(2m(Ⅰ)求f(x)的解析式;(Ⅱ)若函數(shù)g(x)=f(x)﹣2(a﹣1)x+1在區(qū)間[0,4]上的最大值為9,求實(shí)數(shù)a的值.20.已知冪函數(shù)f(x)=(m2﹣3m+3)xm的圖象關(guān)于y軸對稱,集合A={x|1﹣a<x≤3a+1}.(1)求m的值;(2)當(dāng)x∈[22,2]時,f(x)的值域?yàn)榧螧,若x∈B是x∈A21.已知冪函數(shù)f(x)=(m2﹣3m﹣17)xm﹣2的圖象關(guān)于y軸對稱.(1)求f(x)的解析式;(2)求函數(shù)g(x)=f(2x)﹣4x2+3在[﹣1,2]上的值域.22.已知冪函數(shù)f(x)=(m2?2m+2)x5k?2(1)求函數(shù)f(x)的解析式;(2)若f(2x﹣1)<f(2﹣x),求x的取值范圍;(3)若實(shí)數(shù)a,b(a,b∈R+)滿足2a+3b=7m,求3a+1課后作業(yè)一、單選題1.已知冪函數(shù)fx=m2?4m?4xmA.12 B.2 C.1322.已知冪函數(shù)fx的圖象經(jīng)過點(diǎn)3,19,則函數(shù)gx=A.2 B.1 C.14 3.函數(shù)fx=m2?m?1xm2+m?3是冪函數(shù),對任意x1,x2∈0,+∞,且x1A.恒大于0 B.恒小于0C.等于0 D.無法判斷4.函數(shù)fx=1?xA.?∞,1 B.?∞,12∪12,15.函數(shù)y=x?1A.
B.
C.
D.
6.函數(shù)f(x)=(6?x?x2A.[?12,2] B.[?3,?12]7.若冪函數(shù)fx=x?m2+2m+259的圖象關(guān)于y軸對稱,fA.19 B.19或499 C.?138.設(shè)a=4512,b=5415,c=3A.c<a<b B.c<b<aC.a(chǎn)<c<b D.b<c<a二、多選題9.已知冪函數(shù)y=fx的圖象經(jīng)過點(diǎn)(9,3),則下列結(jié)論正確的有(
A.fx為偶函數(shù) B.fC.若x>1,則fx>1 D.若x10.已知函數(shù)fx=xα(α是常數(shù)),A.α=12 B.fxC.fx的定義域?yàn)?,+∞ D.在區(qū)間0,111.冪函數(shù)f(x)=(2m2+m?2)A.m=1 B.函數(shù)f(x)是偶函數(shù)C.f(?2)<f(3) D.函數(shù)f(x)的值域?yàn)?0,+12.若函數(shù)f(x)=m2?6m+9xmA.1 B.2 C.3 D.4三、填空題13.當(dāng)α∈R時,函數(shù)y=xα?2的圖象恒過定點(diǎn)A,則點(diǎn)14.已知函數(shù)fx=x13,則關(guān)于t15.已知冪函數(shù)y=fx的圖象過點(diǎn)(3,19),且當(dāng)x∈12,16.若函數(shù)fx=m+4四、解答題17.已知冪函數(shù)fx=m2?6m+10(1)求m和n的值;(2)求滿足不等式2a+3?m318.已知函數(shù)fx(1)若fx是冪函數(shù),求實(shí)數(shù)m,n,p(2)如果m≥1,n>0,且fx在區(qū)間1,2上單調(diào)遞減,求mn19.已知冪函數(shù)fx=3(1)求函數(shù)fx(2)解不等式f3x+220.已知冪函數(shù)f(x)=xm2?m?3(m∈N(1)求f(x)的解析式;(2)當(dāng)x∈[12,3]時,a≤x+2f(x)21.已知冪函數(shù)fx(1)求fx(2)若gx=fx?3x+4,求函數(shù)22.已知冪函數(shù)fx=m(1)求fx(2)若?x∈1,+∞,2x+afx3.3冪函數(shù)1、冪函數(shù)的定義:一般地,函數(shù)叫做冪函數(shù),其中是自變量,是常數(shù)。2、冪函數(shù)的特征:①的系數(shù)為;②的底數(shù)是自變量;③的指數(shù)為常數(shù)。同時滿足以上三個條件才是冪函數(shù)。3、常見的冪函數(shù)圖像及性質(zhì):函數(shù)圖象定義域值域奇偶性奇偶奇非奇非偶奇單調(diào)性在上單調(diào)遞增在上單調(diào)遞減,在上單調(diào)遞增在上單調(diào)遞增在上單調(diào)遞增在和上單調(diào)遞減4、特定冪函數(shù)的性質(zhì):①函數(shù),,,和的圖像都通過點(diǎn)(,);②函數(shù),,是奇函數(shù),函數(shù)是偶函數(shù);③在區(qū)間(,)上,函數(shù),,,單調(diào)遞增,函數(shù)是單調(diào)遞減。④在第一象限內(nèi),函數(shù)的圖像向上與軸無限接近,向右與軸無限接近。⑤在(,)上,冪函數(shù)中越大,函數(shù)圖像越靠近軸;在(,)上冪函數(shù)中越大,函數(shù)圖像越遠(yuǎn)離軸。5、單調(diào)區(qū)間:當(dāng)為整數(shù)時,的正負(fù)性和奇偶性決定了函數(shù)的單調(diào)性。①當(dāng)為正奇數(shù)時,圖像在定義域?yàn)閮?nèi)單調(diào)遞增;②當(dāng)為正偶數(shù)時,圖像在定義域?yàn)榈诙笙迌?nèi)單調(diào)遞減,在第一象限內(nèi)單調(diào)遞增;③當(dāng)為負(fù)奇數(shù)時,圖像在第一三象限各象限內(nèi)單調(diào)遞減(但不能說在定義域內(nèi)單調(diào)遞減);④當(dāng)為負(fù)偶數(shù)時,圖像在第二象限上單調(diào)遞增,在第一象限內(nèi)單調(diào)遞減。⑤,在第一象限內(nèi)遞增;,在第一象限內(nèi)遞減。6、冪函數(shù)圖象的特點(diǎn)、性質(zhì):①如果冪函數(shù)的圖象與坐標(biāo)軸相交,那么交點(diǎn)一定是原點(diǎn)。②冪函數(shù)的圖象最多只能經(jīng)過兩個象限內(nèi);冪函數(shù)的圖象一定會經(jīng)過第一象限,一定不會經(jīng)過第四象限,是否經(jīng)過第二、三象限,要看函數(shù)的奇偶性。冪函數(shù)是偶函數(shù)時,圖象分布在第一、二象限(圖象關(guān)于軸對稱);冪函數(shù)是奇函數(shù)時,圖象分布在第一、三象限(圖象關(guān)于原點(diǎn)對稱);冪函數(shù)是非奇非偶函數(shù)時,圖象只分布在第一象限。③過定點(diǎn):所有的冪函數(shù)在(,)都有定義,并且圖象都通過點(diǎn)(,)。④單調(diào)性:如果,則冪函數(shù)的圖象過原點(diǎn),并且在(,)上為增函數(shù)。如果,則冪函數(shù)的圖象在(,)上為減函數(shù),在第一象限內(nèi),圖象無限接近軸與軸。⑤奇偶性:當(dāng)為奇數(shù)時,冪函數(shù)為奇函數(shù);當(dāng)為偶數(shù)時,冪函數(shù)為偶函數(shù)。當(dāng)(其中互質(zhì),和),若為奇數(shù)為奇數(shù),則是奇函數(shù),若為奇數(shù)為偶數(shù),則是偶函數(shù),若為偶數(shù)為奇數(shù),則是非奇非偶函數(shù)。⑥圖象特征:冪函數(shù),(,),當(dāng)時,若,其圖象在直線下方,若,其圖象在直線上方;當(dāng)時,若,其圖象在直線上方,若,其圖象在直線下方。⑦在第一象限,作直線,它同各冪函數(shù)圖象相交,按交點(diǎn)從下到上的順序,冪指數(shù)按從小到大的順序排列。7、分?jǐn)?shù)指數(shù)冪:我們規(guī)定,正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是且。我們規(guī)定,正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是且。我們規(guī)定,0的正分?jǐn)?shù)指數(shù)冪等于0;0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義?!绢}型1】判斷函數(shù)是否是冪函數(shù)A根據(jù)函數(shù)是冪函數(shù)求參數(shù)值1.下列函數(shù)是冪函數(shù)的是()A.y=2x2 B.y=1x2 C.y=﹣x﹣1 D.【解答】解:B項(xiàng)可化為y=x﹣2,根據(jù)冪函數(shù)的概念,可知函數(shù)y=x﹣2是冪函數(shù),即函數(shù)y=1x2故選:B.2.下列函數(shù)中,y=1x3,y=2x+1,y=x3+xA.1 B.2 C.3 D.4【解答】解:一般地,函數(shù)y=xα叫做冪函數(shù),其中x是自變量,α為常數(shù),故y=1x3=x?3,y=4x5=x5故選:B.3.現(xiàn)有下列函數(shù):①y=x3;②y=(12)x;③y=4x2;④y=x5+1;⑤y=(x﹣1)2;⑥y=x;⑦y=aA.1 B.2 C.3 D.4【解答】解:∵形如y=xα(α為常數(shù))的函數(shù)叫做冪函數(shù),∴①y=x3、⑥y=x是冪函數(shù),故①⑥滿足條件;而②y=(12)x、⑦y=ax(顯然,③y=4x2、④y=x5+1;⑤y=(x﹣1)2不是冪函數(shù),故③④⑤不滿足條件;故其中冪函數(shù)的個數(shù)為2,故選:B.4.若函數(shù)f(x)=(m﹣1)xm+1是冪函數(shù),則實(shí)數(shù)m=()A.0 B.1 C.2 D.1或2【解答】解:因?yàn)楹瘮?shù)f(x)=(m﹣1)xm+1是冪函數(shù),所以m﹣1=1,解得m=2,故選:C.5.已知函數(shù)f(x)=(a2﹣a﹣1)x1a?2為冪函數(shù),則實(shí)數(shù)A.﹣1或2 B.﹣2或1 C.﹣1 D.1【解答】解:因?yàn)閒(x)=(a2﹣a﹣1)x1所以a2?a?1=1a?2≠0故選:C.【題型2】求冪函數(shù)的解析式1.已知冪函數(shù)f(x)的圖象過點(diǎn)(2,16),則f(x)=()A.x4 B.x3 C.x6 D.x5【解答】解:由題意可設(shè)f(x)=xα,∵冪函數(shù)f(x)的圖象過點(diǎn)(2,16),∴2α=16,解得α=4,故f(x)=x4.故選:A.2.若冪函數(shù)f(x)=xa的圖象經(jīng)過點(diǎn)(2,316),則函數(shù)fA.f(x)=x43 C.f(x)=x?4【解答】解:∴2a=316=23故選:A.3.已知點(diǎn)(a3,2)在冪函數(shù)f(x)=(a﹣1)xb的圖象上,則()A.f(x)=x﹣1 B.f(x)=2xC.f(x)=x3 D.f(x)=【解答】解:∵點(diǎn)(a3,2)在冪函數(shù)f(x)=(a﹣1)xb的圖象上,∴a﹣1=1,∴a=2,且a3b=23b=2,∴3b=1,b=13,f(x)故選:D.4.已知點(diǎn)(m,116)在冪函數(shù)f(x)=(m﹣1)xnA.f(x)=x﹣2 B.f(x)=x﹣4 C.f(x)=x2 D.f(x)=x4【解答】解:冪函數(shù)f(x)=(m﹣1)xn,可得m=2,點(diǎn)(2,116)在冪函數(shù)f(x)=xn的圖象上,可得n=﹣4,故f(x)=x﹣4故選:B.5.已知冪函數(shù)f(x)=(m2﹣2m﹣2)xm﹣2的圖象經(jīng)過原點(diǎn),則m=()A.﹣1 B.1 C.3 D.2【解答】解:令m2﹣2m﹣2=1,解得m=﹣1或m=3,當(dāng)m=﹣1時,f(x)=x﹣3的圖象不經(jīng)過原點(diǎn),當(dāng)m=3時,f(x)=x的圖象經(jīng)過原點(diǎn).故選:C.【題型3】求冪函數(shù)的值1.已知冪函數(shù)y=f(x)的圖象過點(diǎn)(4,2),則f(16)=()A.18 B.14 C.4【解答】解:由題意可設(shè)冪函數(shù)f(x)=xα,∵冪函數(shù)y=f(x)的圖象過點(diǎn)(4,2),∴4α=2,解得α=1∴f(x)=x∴f(16)=16故選:C.2.若冪函數(shù)f(x)的圖象過點(diǎn)(2,2),則A.2 B.?2 C.2 【解答】解:設(shè)冪函數(shù)f(x)=xα,由題意得2α=2=2所以f(4)=4故選:C.3.冪函數(shù)f(x)=xα的圖象過點(diǎn)(12,A.2 B.2 C.12 D.【解答】解:∵冪函數(shù)f(x)=xα的圖象過點(diǎn)(1∴將點(diǎn)(12,22)代入冪函數(shù)f(x∴f(2)=2故選:A.4.若f(x)是冪函數(shù),且滿足f(4)f(2)=4,則fA.﹣4 B.4 C.?12 【解答】解:f(x)是冪函數(shù),可設(shè)f(x)=xα,∵f(4)f(2)=22α2∴f(x)=x2,∴f(1故選:D.5.已知冪函數(shù)f(x)滿足f(6)f(2)=4,則f(A.2 B.14 C.?1【解答】解:依題意,設(shè)f(x)=xα,則f(6)f(2)所以f(1故選:B.【題型4】求冪函數(shù)的定義域1.已知冪函數(shù)f(x)的圖象過點(diǎn)(2,2),則f(A.R B.(0,+∞) C.[0,+∞) D.(﹣∞,0)∪(0,+∞)【解答】解:設(shè)f(x)=xα,因?yàn)閒(x)的圖象過點(diǎn)(2,2),所以2α則f(x)=x,所以f(x故選:C.2.若冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(3,19A.{x|x∈R,x>0} B.{x|x∈R,x<0} C.{x|x∈R,且x≠0} D.R【解答】解:由冪函數(shù)f(x)=xα的圖象經(jīng)過點(diǎn)(3,19),可得:19=3α冪函數(shù)f(x)=x﹣2,所以函數(shù)f(x)的定義域?yàn)椋海ī仭蓿?)∪(0,+∞).故選:C.3.下列冪函數(shù)中,定義域?yàn)镽的冪函數(shù)是()A.y=x34 B.y=x?12 C.y【解答】解:由于函數(shù)y=x34由于函數(shù)y=x?1由于函數(shù)y=x﹣6=1x6的定義域?yàn)閧x|x由于函數(shù)y=x25=5故選:D.4.若冪函數(shù)y=(m2?2m?2)x?m2+m+3的定義域?yàn)閧A.﹣1≤m≤3 B.m=﹣1或m=3 C.m=﹣1 D.m=3【解答】解:函數(shù)y=(m則m2﹣2m﹣2=1,即m2﹣2m﹣3=0,解得m=3或m=﹣1;當(dāng)m=3時,﹣m2+m+3=﹣3,冪函數(shù)y=x﹣3的定義域?yàn)閧x∈R|x≠0},滿足題意;當(dāng)m=﹣1時,﹣m2+m+3=1,冪函數(shù)y=x的定義域?yàn)镽,不滿足題意;所以m的值是3.故選:D.5.已知冪函數(shù)y=﹣3αxα,則此函數(shù)的定義域?yàn)椋ī仭蓿?)∪(0,+∞).【解答】解:由冪函數(shù)y=﹣3αxα,可得﹣3α=1,解得a=?13,即則滿足x≠0,即冪函數(shù)y=﹣3αxα的定義域?yàn)椋ī仭蓿?)∪(0,+∞).【題型5】求冪函數(shù)的值域1.已知冪函數(shù)f(x)=xα的圖像過點(diǎn)(8,4),則f(x)=xA.?∞,0 B.?∞,0C.0,+∞ D.0,+∞【詳解】∵冪函數(shù)f(x)=xα的圖像過點(diǎn)∴8α=4,解得α=∴f(x)的值域是0,+∞.故選:D.2.下列函數(shù)中,值域?yàn)?0,+∞)的是(
)A.y=x2 B.y=2x C.【詳解】A選項(xiàng)中,y=x2值域?yàn)锽選項(xiàng)中,y=2x值域?yàn)镃選項(xiàng)中,y=lnx值域?yàn)镈選項(xiàng)中,對勾函數(shù)y=x+1x,在?∞,?1上單調(diào)遞增,在?1,0上單調(diào)遞減,在0,1上單調(diào)遞減,在1,+∞上單調(diào)遞增,故值域?yàn)楣蔬x:B.3.下列函數(shù)中,值域?yàn)?,+∞的是(
A.fx=xC.fx=1【詳解】由已知f(x)=x值域?yàn)?,+∵x>0,∴fx=x+1f(x)=1x+1因?yàn)槎x域?yàn)閤∈?1,+∞,f(x)=1?1x(x>1),1x∈故選:C.4.冪函數(shù)y=fx的圖象過點(diǎn)2,2,則函數(shù)y=x?fxA.?∞,+∞ B.?∞,1【詳解】設(shè)fx代入點(diǎn)2,2得∴a=1∴f則y=x?x12,令∴y=函數(shù)y=x?fx的值域是?故選:C.5.函數(shù)y=x23+2x【詳解】設(shè)t=x13,則y=t2+2t+4=(t+1)2+3【題型6】冪函數(shù)的圖象1.冪函數(shù)y=f(x)的圖象過點(diǎn)(4,2),則冪函數(shù)y=f(x)的圖象是()A. B. C. D.【解答】解:設(shè)冪函數(shù)的解析式為y=xa,∵冪函數(shù)y=f(x)的圖象過點(diǎn)(4,2),∴2=4a,解得a=∴y=x當(dāng)0<x<1時,其圖象在直線y=x的上方.對照選項(xiàng).故選:C.2.函數(shù)y=xA. B. C. D.【解答】解:函數(shù)y=x23為偶函數(shù),圖象關(guān)于y軸對稱,故D錯誤,當(dāng)x=0時,y0<23<1,由冪函數(shù)的性質(zhì)可知,y=x23的圖象增長速度變慢,故3.函數(shù)y=xA. B. C. D.【解答】解:研究函數(shù)y=x43知,其是一個偶函數(shù),且在(0,+∞)上增,在(﹣∞,0)上減,由此可以排除C又函數(shù)的指數(shù)43>1,故在(0,+∞)其遞增的趨勢越來越快,由此排除B,故故選A.故選:A.4.如圖是冪函數(shù)y=xα的部分圖像,已知α分別取13、3、﹣3、?13這四個值,則與曲線C1、C2、C3、C4A.3,13,?13,﹣3 B.﹣3,?1C.?13,3,﹣3,13 D.3,【解答】解:根據(jù)冪函數(shù)的圖象與性質(zhì),當(dāng)x>1時,圖象越靠近x軸的指數(shù)越小,因此相應(yīng)于曲線C1、C2、C3、C4相應(yīng)的α依次為3,13,?故選:A.5.冪函數(shù)y=x﹣1及直線y=x,y=1,x=1將平面直角坐標(biāo)系的第一象限分成八個“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如圖所示),則冪函數(shù)y=xA.①,⑦ B.④,⑧ C.③,⑦ D.①,⑤【解答】解:取x=12得,y=(1再取x=2得,y=212=故選:D.【題型7】冪函數(shù)的單調(diào)性1.下列冪函數(shù)在區(qū)間(0,+∞)內(nèi)單調(diào)遞減的是()A.y=x B.y=x2 C.y=x3 D.y=x﹣1【解答】解:函數(shù)y=x在區(qū)間(0,+∞)內(nèi)單調(diào)遞增,故排除A;函數(shù)y=x2在區(qū)間(0,+∞)內(nèi)單調(diào)遞增,故排除B;函數(shù)y=x3在區(qū)間(0,+∞)內(nèi)單調(diào)遞增,故排除C;函數(shù)y=x﹣1=1x在區(qū)間(0,+∞)內(nèi)單調(diào)遞減,故故選:D.2.已知冪函數(shù)y=xα的圖象過點(diǎn)(1A.(﹣∞,+∞) B.(﹣∞,0) C.[0,+∞) D.(0,+∞)【解答】解:根據(jù)冪函數(shù)y=xα的圖象過點(diǎn)(1得(12)所以函數(shù)y=x﹣2,x≠0;所以函數(shù)y的單調(diào)遞減區(qū)間為(0,+∞).故選:D.3.若冪函數(shù)f(x)=(2m2﹣3m﹣1)xm在(0,+∞)上單調(diào)遞減,則m=()A.2 B.12 C.?1【解答】解:由冪函數(shù)的定義可知,2m2﹣3m﹣1=1,即2m2﹣3m﹣2=0,解得m=2或m=?1當(dāng)m=2時,f(x)=x2,在(0,+∞)上單調(diào)遞增,不合題意;當(dāng)m=?12時,f(x)=x故選:C.4.已知函數(shù)f(x)=(m2?m?1)A.2 B.﹣1 C.4 D.2或﹣1【解答】解:冪函數(shù)f(x)=(m令m2﹣m﹣1=1,得m2﹣m﹣2=0,解得m=2或m=﹣1;當(dāng)m=2時,m2﹣2m﹣2=﹣2,函數(shù)f(x)=x﹣2,在(0,+∞)上是減函數(shù),滿足題意;當(dāng)m=﹣1時,m2﹣2m﹣2=1,函數(shù)f(x)=x,在(0,+∞)上是增函數(shù),不滿足題意;所以實(shí)數(shù)m=2.故選:A.5.已知冪函數(shù)f(x)為偶函數(shù),且在(0,+∞)上單調(diào)遞減,則f(x)的解析式可以是()A.f(x)=x12 B.f(x)=x23 C.f(x)=x﹣2 D.【解答】解:對于選項(xiàng)A,函數(shù)f(x)=x12的定義域?yàn)閇0,+∞),因?yàn)槎x域不關(guān)于原點(diǎn)對稱,所以函數(shù)f(x對于選項(xiàng)B,函數(shù)f(x)=x23又因?yàn)閒(﹣x)=3(?x)2=3x2因?yàn)?3>0,所以f(x)=x對于選項(xiàng)C,函數(shù)f(x)=x﹣2=1x2又因?yàn)閒(﹣x)=1(?x)2=1x2因?yàn)椹?<0,所以f(x)=x﹣2在(0,+∞)上單調(diào)遞減,故C正確;對于選項(xiàng)D,函數(shù)f(x)=x﹣3=1x3又因?yàn)閒(﹣x)=1(?x)3=?1x3=?f故選:C.【題型8】冪函數(shù)的奇偶性1.下列函數(shù)既是冪函數(shù)又是奇函數(shù)的是()A.y=3x B.y=1x2 C.y=2【解答】解:由冪函數(shù)的定義知,y=2x2,y=x+1x不是冪函數(shù),y=3x=x1∵f(﹣x)=(?x)13=?x13∵y=1x2故選:A.2.冪函數(shù)y=f(x)為偶函數(shù),且在(0,+∞)上為減函數(shù)的是()A.f(x)=x﹣2 B.f(x)=x C.f(x)=x2 D.f(x)=x【解答】解:冪函數(shù)y=f(x)=x﹣2為偶函數(shù),且在(0,+∞)上為減函數(shù)的,故A正確;冪函數(shù)y=f(x)=x是非奇非偶函數(shù),故B冪函數(shù)y=f(x)=x2為偶函數(shù),且在(0,+∞)上為增函數(shù),故C錯誤;冪函數(shù)y=f(x)=x3是奇函數(shù),故D錯誤.故選:A.3.設(shè)α∈{?1,1,12,3},則使函數(shù)y=xα的定義域?yàn)镽A.﹣1,1,3 B.12,1 C.﹣1,3 【解答】解:當(dāng)a=﹣1時,函數(shù)的定義域?yàn)閧x|x≠0},不滿足定義域?yàn)镽;當(dāng)a=1時,函數(shù)y=xα的定義域?yàn)镽且為奇函數(shù),滿足要求;當(dāng)a=12函數(shù)的定義域?yàn)閧x|x≥0},不滿足定義域?yàn)楫?dāng)a=3時,函數(shù)y=xα的定義域?yàn)镽且為奇函數(shù),滿足要求;故選:D.4.冪函數(shù)y=x2mA.0 B.1 C.0或1 D.2【解答】解:冪函數(shù)y=x所以2m2﹣3m﹣2<0,?12<m當(dāng)m=0時,2m2﹣3m﹣2=﹣2,滿足題意;當(dāng)m=1時,2m2﹣3m﹣2=﹣3,不滿足題意;所以m=0.故選:A.5.冪函數(shù)f(x)=(m2+5m﹣5)xm2?3m(m∈Z)是偶函數(shù),且在(0,+∞)上是減函數(shù),則A.﹣6 B.1 C.6 D.1或﹣6【解答】解:∵冪函數(shù)f(x)=(m2+5m﹣5)xm2?3m(m∈∴m2+5m?5=1m故選:B.【題型9】由冪函數(shù)的單調(diào)性比較大小1.已知a=243,b=A.b<a<c B.a(chǎn)<b<c C.b<c<a D.c<a<b【解答】解:由題意,a=2b=3c=25∵9<16<25,∴39故選:A.2.設(shè)a=1.2A.c<a<b B.a(chǎn)<c<b C.b<a<c D.c<b<a【解答】解:∵a=1.212,c=1.112,b=0.9?∴1.212>(109)故選:D.3.若a=(12)23,b=(1A.a(chǎn)<b<c B.c<a<b C.b<c<a D.b<a<c【解答】解:∵y=x∴a=(∵y=(∴a=(12)23<c=故選:D.4.已知a=243,b=A.b<a<c B.a(chǎn)<b<c C.b<c<a D.c<a<b【解答】解:∵a=2c=2512=∴b<a<c.故選:A.5.若a=20.4,b=30.3,c=40.2,則()A.a(chǎn)>b>c B.c>b>a C.c=a>b D.b>a=c【解答】解:a=20.4=40.2=c,∵c=40.2=415=161又∵冪函數(shù)y=x∴b>c,∴b>a=c,故選:D.當(dāng)堂檢測一.選擇題(共8小題)1.冪函數(shù)y=f(x)經(jīng)過點(diǎn)(3,3),則f(x)是()A.偶函數(shù),且在(0,+∞)上是增函數(shù) B.偶函數(shù),且在(0,+∞)上是減函數(shù) C.奇函數(shù),且在(0,+∞)是減函數(shù) D.非奇非偶函數(shù),且在(0,+∞)上是增函數(shù)【解答】解:設(shè)冪函數(shù)的解析式為:y=xα,將(3,3)代入解析式得:3α=3,解得α=∴y=x故選:D. 2.函數(shù)f(x)=(m2﹣m﹣1)xm是冪函數(shù),且在x∈(0,+∞)上為增函數(shù),則實(shí)數(shù)m的值是()A.﹣1 B.2 C.3 D.﹣1或2【解答】解:要使函數(shù)f(x)=(m2﹣m﹣1)xm是冪函數(shù),且在x∈(0,+∞)上為增函數(shù),則m2解得:m=2.故選:B.3.y=xA.增函數(shù)且是奇函數(shù) B.增函數(shù)且是偶函數(shù) C.減函數(shù)且是奇函數(shù) D.減函數(shù)且是偶函數(shù)【解答】解:考查冪函數(shù)y=x∵35>0,根據(jù)冪函數(shù)的圖象與性質(zhì)故選:A.4.冪函數(shù)y=(m2﹣m﹣1)x﹣5m﹣3在x∈(0,+∞)時為減函數(shù),則m=()A.﹣1 B.2 C.0或1 D.﹣1或2【解答】解:由題意知:m2?m?1=1?5m?3<0故選:B.5.若f(x)是冪函數(shù),且滿足f(4)f(2)=3,則A.3 B.﹣3 C.13 D.【解答】解:設(shè)f(x)=xa,∵f(4)f(2)=3,∴4a2a=2a=3,∴a=log23,∴故選:C.6.已知冪函數(shù)f(x)=xm﹣2(m∈N)的圖象關(guān)于原點(diǎn)對稱,且在(0,+∞)上是減函數(shù),若(a+1)?m2A.(﹣1,3) B.(23,C.(﹣1,32) D.(﹣∞,﹣1)∪(2【解答】解:∵冪函數(shù)f(x)=xm﹣2(m∈N)的圖象關(guān)于原點(diǎn)對稱,且(0,+∞)上是減函數(shù),所以m﹣2<0,因?yàn)閙∈N,所以m=0或m=1,∴當(dāng)m=0時,0﹣2=﹣2,圖象關(guān)y軸對稱,不滿足題意;當(dāng)m=1時,1﹣2=﹣1,圖象關(guān)于原點(diǎn)對稱,滿足題意,∴不等式(a+1)?m2因?yàn)楹瘮?shù)y=x?12在(0,+∞)上遞減,所以a+1>0,3﹣2a>0,解得23<a<32,即實(shí)數(shù)故選:B.7.設(shè)a=(34)12,b=(4A.c<a<b B.c<b<a C.a(chǎn)<c<b D.b<c<a【解答】解:a=(34)12=且0<827<9所以(8所以c<a;綜上知,c<a<b.故選:A.8.函數(shù)f(x)=(m2?m?1)xm2+m?3是冪函數(shù),對任意x1,x2∈(0,+∞),且x1≠x2,滿足f(x1)?f(x2)x1?x2>0,若aA.恒大于0 B.恒小于0 C.等于0 D.無法判斷【解答】解:由已知函數(shù)f(x)=(m2?m?1)xm2+m?3是冪函數(shù),可得m2當(dāng)m=2時,f(x)=x3;當(dāng)m=﹣1時,f(x)=x﹣3.對任意的x1、x2∈(0,+∞),且x1≠x2,滿足f(x∴m=2,f(x)=x3.a(chǎn)+b>0,ab<0,可知a,b異號,且正數(shù)的絕對值大于負(fù)數(shù)的絕對值,則f(a)+f(b)恒大于0.故選:A.二.多選題(共4小題)(多選)9.已知冪函數(shù)f(x)=xmn(m,n∈N?,m,A.當(dāng)m,n都是奇數(shù)時,冪函數(shù)f(x)是奇函數(shù) B.當(dāng)m是偶數(shù),n是奇數(shù)時,冪函數(shù)f(x)是偶函數(shù) C.當(dāng)m是奇數(shù),n是偶數(shù)時,冪函數(shù)f(x)是偶函數(shù) D.當(dāng)0<mn<1時,冪函數(shù)f【解答】解:∵冪函數(shù)f(x)=xmn(m,n∈N故m,n都是奇數(shù)時,冪函數(shù)f(x)是奇函數(shù),故A正確;當(dāng)m是偶數(shù),n是奇數(shù)時,冪函數(shù)f(x)是偶函數(shù),故B正確;當(dāng)m是奇數(shù),n是偶數(shù)時,冪函數(shù)f(x)不一定是偶函數(shù),如y=x12當(dāng)0<mn<1時,冪函數(shù)f(x故選:AB.(多選)10.已知函數(shù)f(x)=xa的圖象經(jīng)過點(diǎn)(1A.f(x)的圖象經(jīng)過點(diǎn)(3,9) B.f(x)的圖象關(guān)于y軸對稱 C.f(x)在(0,+∞)上單調(diào)遞減 D.f(x)在(0,+∞)內(nèi)的值域?yàn)椋?,+∞)【解答】解:∵函數(shù)f(x)=xa的圖象經(jīng)過點(diǎn)(13,3),∴(∴f(x)=x﹣1=1顯然,當(dāng)x=3時,f(x)=13,故顯然,f(x)不是偶函數(shù),故它的圖象不關(guān)于y軸對稱,故B錯誤.在(0,+∞)上,f(x)=1x是減函數(shù),故在(0,+∞)內(nèi),f(x)=1x∈(0,+∞),故故選:CD. (多選)11.已知冪函數(shù)f(x)=(m+9A.f(?32)=116 B.f(x)的定義域是C.f(x)是偶函數(shù) D.不等式f(x﹣1)≥f(2)的解集是[﹣1,1)∪(1,3]【解答】解:冪函數(shù)f(x)=(m+95)xm,∴m∴f(x)=x?4∵f(﹣32)=(?32)?4f(x)=x又∵f(﹣x)=15(?x)4=15x4∵f(x)=x?45,∴不等式f(x﹣1)≥f(2)等價于f(|x﹣1|)≥f(2),∴x?1≠0|x?1|≤2解得:﹣1≤x<1,或1<x≤3,故選項(xiàng)D故選:ACD.(多選)12.已知函數(shù)f(x)=(m2﹣m﹣1)xm2+m?3是冪函數(shù),對任意x1,x2∈(0,+∞),且x1≠x2,滿足f(x1)?f(x2)x1?x2>0.若A.a(chǎn)+b>0,ab<0 B.a(chǎn)+b<0,ab>0 C.a(chǎn)+b<0,ab<0 D.以上都可能【解答】解:∵對任意x1,x2∈(0,+∞),且x1≠x2,滿足f(x∴f(x)在(0,+∞)上是增函數(shù),∵f(x)=(m2﹣m﹣1)xm2+m?3是冪函數(shù),∴m2﹣m﹣1=1,解得m=﹣1或若m=﹣1,則f(x)=x﹣3,不符合題意;若m=2,則f(x)=x3,符合題意;故f(x)=x3,則f(x)在R上是增函數(shù),且是奇函數(shù);對于選項(xiàng)A,∵a+b>0,∴a>﹣b,∴f(a)+f(b)=f(a)﹣f(﹣b)>0,故不符合題意;對于選項(xiàng)B,當(dāng)a=b=﹣1時,a+b<0,ab>0,且f(a)+f(b)=﹣2<0,當(dāng)a=﹣2,b=1時,a+b<0,ab<0,且f(a)+f(b)=﹣8+1=﹣7<0,故符合題意;對于選項(xiàng)C,當(dāng)a=﹣2,b=1時,a+b<0,ab<0,且f(a)+f(b)=﹣8+1=﹣7<0,故符合題意;對于選項(xiàng)D,顯然不符合題意;故選:BC.三.填空題(共4小題)13.若冪函數(shù)y=(m2﹣m﹣1)xm為偶函數(shù),則m=2.【解答】解:∵冪函數(shù)y=(m2﹣m﹣1)xm為偶函數(shù),∴m2?m?1=1m=2k,k∈Z故答案為:2.14.已知冪函數(shù)f(x)=(m2﹣2m﹣2)xm滿足f(2)<f(3),則m=3.【解答】解:因?yàn)楹瘮?shù)f(x)=(m2﹣2m﹣2)xm為冪函數(shù),則m2﹣2m﹣2=1,解得m=3或m=﹣1,又因?yàn)閒(2)<f(3),所以m=3,故答案為:3.15.已知冪函數(shù)f(x)=(m2﹣3m+3)xm+1的圖象關(guān)于原點(diǎn)對稱,則滿足(a+1)m>(3﹣2a)m成立的實(shí)數(shù)a的取值范圍為(23【解答】解:由冪函數(shù)的定義可知,m2﹣3m+3=1,解得:m=1或2,又∵冪函數(shù)f(x)是奇函數(shù),∴m=2,原不等式化為:(a+1)2>(3﹣2a)2,整理得:3a2﹣14a+8<0,解得:23故答案為:(2316.已知冪函數(shù)f(x)=xα(α為常數(shù))過點(diǎn)(4,2),則f(a﹣3)+f(5﹣a)的最大值為2.【解答】解:∵冪函數(shù)f(x)=xα(α為常數(shù))過點(diǎn)(4,2),∴4α=2,∴α=12,f(x)則f(a﹣3)+f(5﹣a)=a?3+5?a∴f(a﹣3)+f(5﹣a)=a?3+5?a∵(a?3+5?a)2=a﹣3+5﹣a+2?a∴當(dāng)a=4時,(a?2+5?a)∴a?2+∴f(a﹣3)+f(5﹣a)的最大值為2.故答案為:2.四.解答題(共6小題)17.已知冪函數(shù)f(x)=(m2﹣5m+7)xm﹣1為偶函數(shù).(1)求f(x)的解析式;(2)若g(x)=f(x)﹣ax﹣3在[1,3]上不是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.【解答】解:(1)由題意m2﹣5m+7=1,解得:m=2或3,若f(x)是偶函數(shù),故f(x)=x2;(2)g(x)=f(x)﹣ax﹣3=x2﹣ax﹣3,g(x)的對稱軸是x=a若g(x)在[1,3]上不是單調(diào)函數(shù),則1<a2<即a的取值范圍是(2,6).18.若冪函數(shù)f(x)=(2m2+m﹣2)x2m+1在其定義域上是增函數(shù).(1)求f(x)的解析式;(2)若f(2﹣a)<f(a2﹣4),求a的取值范圍.【解答】解:(1)由函數(shù)f(x)=(2m2+m﹣2)x2m+1是冪函數(shù),所以2m2+m﹣2=1,解得m=1或m=?3當(dāng)m=1時,f(x)=x3,在定義域R上是增函數(shù),滿足題意;當(dāng)m=?32時,f(x)=x所以m=1,f(x)=x3.(2)由f(x)=x3,在定義域R上是增函數(shù),所以不等式f(2﹣a)<f(a2﹣4)等價于2﹣a<a2﹣4,化簡得a2+a﹣6>0,解得a<﹣3或a>2,所以a的取值范圍是(﹣∞,﹣3)∪(2,+∞).19.已知冪函數(shù)f(x)=(2m(Ⅰ)求f(x)的解析式;(Ⅱ)若函數(shù)g(x)=f(x)﹣2(a﹣1)x+1在區(qū)間[0,4]上的最大值為9,求實(shí)數(shù)a的值.【解答】解:(Ⅰ)∵f(x)是冪函數(shù),∴2m2﹣m﹣2=1,解得:m=32,或m=32時,f(x)=xm=﹣1時,f(x)=x2;綜上,函數(shù)f(x)是解析式是f(x)=x2;(Ⅱ)g(x)=f(x)﹣2(a﹣1)x+1=x2﹣2(a﹣1)x+1,對稱軸是x=(a﹣1),函數(shù)圖像開口向上,(1)a﹣1≤2即a≤3時,f(x)max=f(4)=16﹣8a+9=9,解得:a=2,(2)a﹣1>2即a>3時,f(x)max=f(0)=1,不合題意,故a=2.20.已知冪函數(shù)f(x)=(m2﹣3m+3)xm的圖象關(guān)于y軸對稱,集合A={x|1﹣a<x≤3a+1}.(1)求m的值;(2)當(dāng)x∈[22,2]時,f(x)的值域?yàn)榧螧,若x∈B是x∈A【解答】解:(1)由冪函數(shù)f(x)=(m2﹣3m+3)xm,可知m2﹣3m+3=1,解得m=1或m=2,當(dāng)m=1時,f(x)=x的圖象不關(guān)于y軸對稱,舍去,當(dāng)m=2時,f(x)=x2的圖象關(guān)于y軸對稱,滿足條件,因此,m=2.(2)當(dāng)x∈[﹣1,2]時,f(x)的值域?yàn)閇12,4]由題意知B?A,得1?a<3a+11?a<12所以a的取值范圍為[1,+∞).21.已知冪函數(shù)f(x)=(m2﹣3m﹣17)xm﹣2的圖象關(guān)于y軸對稱.(1)求f(x)的解析式;(2)求函數(shù)g(x)=f(2x)﹣4x2+3在[﹣1,2]上的值域.【解答】解:(1)因?yàn)閒(x)=(m2﹣3m﹣17)xm﹣2是冪函數(shù),所以m2﹣3m﹣17=1,解得m=6或m=﹣3.又f(x)的圖象關(guān)于y軸對稱,所以m=6,故f(x)=x4.(2)由(1)可知,g(x)=16x因?yàn)閤∈[﹣1,2],所以x2∈[0,4],所以16(x故g(x)在[﹣1,2]上的值域?yàn)閇1122.已知冪函數(shù)f(x)=(m2?2m+2)x5k?2(1)求函數(shù)f(x)的解析式;(2)若f(2x﹣1)<f(2﹣x),求x的取值范圍;(3)若實(shí)數(shù)a,b(a,b∈R+)滿足2a+3b=7m,求3a+1【解答】解:(1)∵冪函數(shù)f(x)=(m2?2m+2)x5k?2∴m2﹣2m+2=1,且5k﹣2k2為正偶數(shù),∴m=1,k=2,故f(x)=x2.(2)∵f(2x﹣1)<f(2﹣x),∴|2x﹣1|<|2﹣x|,∴4x2﹣4x+1<x2﹣4x+4,即3x2<3,求得﹣1<x<1.(3)若實(shí)數(shù)a,b(a,b∈R+)滿足2a+3b=7m=7,∴2(a+1)+3(b+1)=12,即112[2(a+1)+3(b則3a+1+2b+1=112[2(a+1)+3(b+1)]?(3=1+112(4?a+1b+1+9?b+1a+1)≥1+當(dāng)且僅當(dāng)4?a+1b+1=9?b+1a+1時,即2a故3a+1課后作業(yè)一、單選題1.已知冪函數(shù)fx=m2?4m?4xmA.12 B.2 C.132【詳解】因?yàn)閒x所以m2?4m?4=1,即m2?4m?5=0,解得當(dāng)m=?1時,fx=x當(dāng)m=5時,fx=x所以冪函數(shù)fx的解析式為f所以f2故選:D.2.已知冪函數(shù)fx的圖象經(jīng)過點(diǎn)3,19,則函數(shù)gx=A.2 B.1 C.14 【詳解】設(shè)f∴gx=x?1由于y=?t2+t在區(qū)間1∴?t2+tmax故選:C.3.函數(shù)fx=m2?m?1xm2+m?3是冪函數(shù),對任意x1,x2∈0,+∞,且x1A.恒大于0 B.恒小于0C.等于0 D.無法判斷【詳解】因?yàn)閷θ我鈞1,x2∈0,+∞,且x1≠由已知fx=m2?m?1xm當(dāng)m=2時,fx=x當(dāng)m=?1時,fx=x故m=?1,fx=x因?yàn)閍<0<b,a<b,所以0<?a<b,所以所以?fa>fb4.函數(shù)fx=1?xA.?∞,1 B.?∞,12∪12,1【答案】B【分析】根據(jù)函數(shù)解析式有意義可得出關(guān)于實(shí)數(shù)x的不等式組,由此可解得函數(shù)fx【詳解】因?yàn)閒x則有1?x>02x?1≠0,解得x<1且x≠12,因此f故選:B.5.函數(shù)y=x?1A.
B.
C.
D.
【答案】D【分析】根據(jù)冪函數(shù)的性質(zhì)直接判斷即可.【詳解】由冪函數(shù)性質(zhì)知:y=x?1∴ABC錯誤,D正確.故選:D.6.函數(shù)f(x)=(6?x?x2A.[?12,2] B.[?3,?12]【詳解】f(x)=6?x?由6?x?x2≥0得?3≤x≤2所以函數(shù)fx的單調(diào)遞減區(qū)間為?故選:A.7.若冪函數(shù)fx=x?m2+2m+259的圖象關(guān)于y軸對稱,fA.19 B.19或499 C.?13【詳解】由題意知fx是偶函數(shù),因?yàn)閒x在?∞又?m2+2m+259=?(m?1)故選:D.8.設(shè)a=4512,b=5415,c=3A.c<a<b B.c<b<aC.a(chǎn)<c<b D.b<c<a【詳解】因?yàn)閍=4512=又0<2764<12<1625<1故選:A.二、多選題9.已知冪函數(shù)y=fx的圖象經(jīng)過點(diǎn)(9,3),則下列結(jié)論正確的有(
A.fx為偶函數(shù) B.fC.若x>1,則fx>1 D.若x【詳解】將點(diǎn)(9,3)代入函數(shù)f(x)=xα得:2=4α,則∴f(x)的定義域?yàn)閇0,+∞),所以函數(shù)f(x)在定義域[0,+∞當(dāng)x>1時,x>1,即f(x)>1若x2fx=x=2x即fx故選:BCD.10.已知函數(shù)fx=xα(α是常數(shù)),A.α=12 B.fxC.fx
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 新《體育法》知識考試題庫200題(含答案)
- 2025年云南省職教高考《職測》必刷考試練習(xí)題庫(含答案)
- 《密碼法》知識競賽考試題庫150題(含答案)
- 《保教知識與能力》(幼兒園)歷年教師資格考試真題題庫(含答案解析)
- 2025年江西洪州職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 相關(guān)考試政策解讀
- 物業(yè)管理的社交媒體
- 滅火器的選擇與使用方法
- 高硫鋁土礦礦物特性與浮選脫硫研究
- 系統(tǒng)級封裝中高速串行鏈路信號完整性研究與優(yōu)化
- 湖北省十堰市城區(qū)2024-2025學(xué)年九年級上學(xué)期期末質(zhì)量檢測綜合物理試題(含答案)
- 導(dǎo)播理論知識培訓(xùn)班課件
- 電廠檢修安全培訓(xùn)課件
- 四大名繡課件-高一上學(xué)期中華傳統(tǒng)文化主題班會
- 高中生物選擇性必修1試題
- 電氣工程及其自動化專業(yè)《畢業(yè)設(shè)計(jì)(論文)及答辯》教學(xué)大綱
- 《客艙安全管理與應(yīng)急處置》課件-第14講 應(yīng)急撤離
- 危險化學(xué)品押運(yùn)員培訓(xùn)
- 2025屆高考作文押題預(yù)測5篇
- 培訓(xùn)學(xué)校書法課家長會
- 一年級數(shù)學(xué)(上)計(jì)算題專項(xiàng)練習(xí)集錦
評論
0/150
提交評論