




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
重慶實驗中學2023年數(shù)學高二上期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設為坐標原點,直線與雙曲線的兩條漸近線分別交于兩點,若的面積為8,則的焦距的最小值為()A.4 B.8C.16 D.322.某地為響應總書記關于生態(tài)文明建設的號召,大力開展“青山綠水”工程,造福于民,擬對該地某湖泊進行治理,在治理前,需測量該湖泊的相關數(shù)據(jù).如圖所示,測得角∠A=23°,∠C=120°,米,則A,B間的直線距離約為(參考數(shù)據(jù))()A.60米 B.120米C.150米 D.300米3.設等比數(shù)列的前項和為,若,則的值是()A. B.C. D.44.若橢圓上一點到C的兩個焦點的距離之和為,則()A.1 B.3C.6 D.1或35.設,直線與直線平行,則()A. B.C. D.6.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.167.若直線與平行,則實數(shù)m等于()A.0 B.1C.4 D.0或48.已知橢圓的左焦點為,右頂點為,點在橢圓上,且軸,直線交軸于點.若,則橢圓的離心率是A. B.C. D.9.已知,是雙曲線的左右焦點,過的直線與曲線的右支交于兩點,則的周長的最小值為()A. B.C. D.10.等差數(shù)列中,已知,,則的前項和的最小值為()A. B.C. D.11.某路口人行橫道的信號燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時間為40秒.若一名行人來到該路口遇到紅燈,則至少需要等待18秒才出現(xiàn)綠燈的概率為()A B.C. D.12.復數(shù)的共軛復數(shù)是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.命題,恒成立是假命題,則實數(shù)a取值范圍是________________14.已知數(shù)列的前項和為,,則___________,___________.15.已知線段AB的長度為3,其兩個端點A,B分別在x軸、y軸上滑動,點M滿足.則點M的軌跡方程為______16.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關系為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項和是,且,等差數(shù)列中,(1)求數(shù)列的通項公式;(2)定義:記,求數(shù)列的前20項和18.(12分)在①(b-c)cosA=acosC,②sin(B+C)=-1+2sin2,③acosC=b-c,這三個條件中任選一個作為已知條件,然后解答問題在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知______________(1)求角A的大?。唬?)若a=2,且△ABC的面積為2,求b+c19.(12分)求適合下列條件的橢圓的標準方程:(1)經(jīng)過點,;(2)長軸長是短軸長的3倍,且經(jīng)過點20.(12分)已知拋物線經(jīng)過點.(Ⅰ)求拋物線C的方程及其焦點坐標;(Ⅱ)過拋物線C上一動點P作圓的兩條切線,切點分別為A,B,求四邊形面積的最小值.21.(12分)已知雙曲線(1)若,求雙曲線的焦點坐標、頂點坐標和漸近線方程;(2)若雙曲線的離心率為,求實數(shù)的取值范圍22.(10分)從①;②;③這三個條件中任選一個,補充在下面問題中,并作答設等差數(shù)列的前n項和為,,______;設數(shù)列的前n項和為,(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和注:作答前請先指明所選條件,如果選擇多個條件分別解答,按第一個解答計分
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】因為,可得雙曲線的漸近線方程是,與直線聯(lián)立方程求得,兩點坐標,即可求得,根據(jù)的面積為,可得值,根據(jù),結合均值不等式,即可求得答案.【詳解】雙曲線的漸近線方程是直線與雙曲線的兩條漸近線分別交于,兩點不妨設為在第一象限,在第四象限聯(lián)立,解得故聯(lián)立,解得故面積為:雙曲線其焦距為當且僅當取等號的焦距的最小值:故選:B.【點睛】本題主要考查了求雙曲線焦距的最值問題,解題關鍵是掌握雙曲線漸近線的定義和均值不等式求最值方法,在使用均值不等式求最值時,要檢驗等號是否成立,考查了分析能力和計算能力,屬于中檔題.2、C【解析】應用正弦定理有,結合已知條件即可求A,B間的直線距離.【詳解】由題設,,在△中,,即,所以米.故選:C3、B【解析】根據(jù)題意,由等比數(shù)列的性質可知成等比數(shù)列,從而可得,即可求出的結果.【詳解】解:已知等比數(shù)列的前項和為,,由等比數(shù)列的性質得:成等比數(shù)列,且公比不為-1即成等比數(shù)列,,,.故選:B.4、B【解析】討論焦點的位置利用橢圓定義可得答案.【詳解】若,則由得(舍去);若,則由得故選:B.5、C【解析】根據(jù)直線平行求解即可.【詳解】因為直線與直線平行,所以,即,經(jīng)檢驗,滿足題意.故選:C6、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當且僅當時取等.故選:B.7、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.8、D【解析】由于BF⊥x軸,故,設,由得,選D.考點:橢圓的簡單性質9、C【解析】根據(jù)雙曲線的定義和性質,當弦垂直于軸時,即可求出三角形的周長的最小值.【詳解】由雙曲線可知:的周長為.當軸時,周長最小值為故選:C10、B【解析】由等差數(shù)列的性質將轉化為,而,可知數(shù)列是遞增數(shù),從而可求得結果【詳解】∵等差數(shù)列中,,∴,即.又,∴的前項和的最小值為故選:B11、B【解析】由幾何概型公式求解即可.【詳解】紅燈持續(xù)時間為40秒,則至少需要等待18秒才出現(xiàn)綠燈的概率為,故選:B12、B【解析】因,故其共軛復數(shù).應選B.考點:復數(shù)的概念及運算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由命題為假命題可得命題為真命題,由此可求a范圍.【詳解】∵命題,恒成立是假命題,∴,,∴,,又函數(shù)在為減函數(shù),∴,∴,∴實數(shù)a的取值范圍是,故答案為:.14、①.②.【解析】第一空:由,代入已知條件,即可解得結果;第二空:由與關系可推導出之間的關系,再由遞推公式即可求出通項公式.【詳解】,可得由,可知時,故時即可化為又故數(shù)列是首項為公比為2的等比數(shù)列,故數(shù)列的通項公式故答案為:①;②15、【解析】設出動點,根據(jù)已知條件得到關于的方程.【詳解】設,由,有,得,所以,由得:,所以點的軌跡的方程是.故答案為:16、相交【解析】由題意知,兩圓的圓心分別為(-2,0),(2,1),故兩圓的圓心距離為,兩圓的半徑之差為1,半徑之和為5,而1<<5,所以兩圓的位置關系為相交三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)利用求得遞推關系得等比數(shù)列,從而得通項公式,再由等差數(shù)列的基本時法求得通項公式;(2)根據(jù)定義求得,然后分組求和法求得和【小問1詳解】由題意,當時,兩式相減,得,即是首項為3,公比為3的等比數(shù)列設數(shù)列的公差為,小問2詳解】由18、(1)(2)【解析】(1)選①:化邊為角化簡求出cos;選②:利用倍角公式將sin()=?1+2sin2化簡為sin=?cos,再利用輔助角公式求解即可;選③:化邊為角化簡運算求解(2)利用面積公式求得,再利用余弦定理可得,計算即可.【小問1詳解】選①∵∴sincos=sinCcos+sincosC=sin(+C)=sin∴cos∵∈,∴=選②∵sin()=?1+2sin2,∴sin=?cos∴sin(+A)=1∵A∈∴A=選③∵∴∴∵A∈,∴A=【小問2詳解】∵,∴又∵∴即19、(1);(2)或.【解析】(1)由已知可得,,且焦點在軸上,進而可得橢圓的標準方程;(2)由已知可得,,此時焦點在軸上,或,,此時焦點在軸上,進而可得橢圓的標準方程;【小問1詳解】解:橢圓經(jīng)過點,,,,,且焦點在軸上,橢圓的標準方程為.【小問2詳解】解:長軸長是短軸長的3倍,且經(jīng)過點,當點在長軸上時,,,此時焦點在軸上,此時橢圓的標準方程為;當點在短軸上時,,,此時焦點在軸上,此時橢圓的標準方程.綜合得橢圓的方程為或.20、(1),;(2).【解析】(1)將點代入拋物線方程求解出的值,則拋物線方程和焦點坐標可知;(2)設出點坐標,根據(jù)切線長相等以及切線垂直于半徑將四邊形的面積表示為,然后根據(jù)三角形面積公式將其表示為,根據(jù)點到點的距離公式表示出,然后結合二次函數(shù)的性質求解出四邊形面積的最小值.【詳解】(1)因為拋物線過點,所以,所以,所以拋物線的方程為:,焦點坐標為,即;(2)設,因為為圓的切線,所以,且,所以,又因為,所以,當時,四邊形的面積有最小值且最小值為.【點睛】關鍵點點睛:解答本題的關鍵在于根據(jù)圓的切線的性質將四邊形面積轉化為三角形的面積,再通過三角形的面積公式將其轉化為二次函數(shù)求最值的問題模型,對于轉化的技巧要求較高.21、(1)焦點坐標為,,頂點坐標為,,漸近線方程為;(2).【解析】(1)根據(jù)雙曲線方程確定,即可按照概念對應寫出焦點坐標、頂點坐標和漸近線方程;(2)先求(用表示),再根據(jù)解不等式得結果.【詳解】(1)當時,雙曲線方程化為,所以,,,所以焦點坐標為,,頂點坐標為,,漸近線方程為.(2)因為,所以,解得,所以實數(shù)的取值范圍是【點睛】本題根據(jù)雙曲線方程求焦點坐標、頂點坐標和漸近線方程,根據(jù)離心率求參數(shù)范圍,考查基本分析求解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教學生做人的課件
- 萬達廣場品質管理
- 年度工作計劃與團隊協(xié)作的關系
- 學校社團工作的安排計劃
- 冷干機維修施工方案
- 班級家長會的有效組織與管理計劃
- 手機操作系統(tǒng)使用說明手冊
- 農(nóng)產(chǎn)品網(wǎng)絡銷售策略指南
- 鐵礦爆破施工方案
- 鋼管花架施工方案
- 第四單元第十課第二框題 保護人身權 同步練習(無答案)2024-2025學年七年級下冊道德與法治
- 2025年中國鐵路青藏集團限公司公開招聘635人筆試自考難、易點模擬試卷(共500題附帶答案詳解)
- 浙江2025年桐鄉(xiāng)市事業(yè)單位招考高頻重點模擬試卷提升(共500題附帶答案詳解)
- 藥械不良事件知識培訓
- 2025至2031年中國管道直飲水系統(tǒng)行業(yè)投資前景及策略咨詢研究報告
- 現(xiàn)場材料進場驗收培訓
- 外賣騎手交通安全培訓
- 【指導規(guī)則】央企控股上市公司ESG專項報告參考指標體系
- 電力公司安全生產(chǎn)責任制度
- 工程機械租賃服務方案及保障措施 (二)
- 《矩陣式組織結構》課件
評論
0/150
提交評論