版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
云南省曲靖一中2023年高二上數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的傾斜角是()A. B.C. D.2.下圖稱為弦圖,是我國古代三國時期趙爽為《周髀算經(jīng)》作注時為證明勾股定理所繪制,我們新教材中利用該圖作為“()”的幾何解釋A.如果,,那么B.如果,那么C.對任意實數(shù)和,有,當(dāng)且僅當(dāng)時等號成立D.如果,那么3.在四面體中,空間的一點滿足,若共面,則()A. B.C. D.4.已知復(fù)數(shù)滿足(其中為虛數(shù)單位),則復(fù)數(shù)的虛部為()A. B.C. D.5.已知動圓過定點,并且與定圓外切,則動圓的圓心的軌跡是()A.拋物線 B.橢圓C.雙曲線 D.雙曲線的一支6.直線x﹣y+3=0的傾斜角是()A.30° B.45°C.60° D.150°7.圓心,半徑為的圓的方程是()A. B.C. D.8.某次數(shù)學(xué)考試試卷評閱采用“雙評+仲裁”的方式,規(guī)則如下:兩位老師獨立評分,稱為一評和二評,當(dāng)兩者所評分?jǐn)?shù)之差的絕對值小于或等于分時,取兩者平均分為該題得分;當(dāng)兩者所評分?jǐn)?shù)之差的絕對值大于分時,再由第三位老師評分,稱之為仲裁,取仲裁分?jǐn)?shù)和一、二評中與之接近的分?jǐn)?shù)的平均分為該題得分.如圖所示,當(dāng),,時,則()A. B.C.或 D.9.已知,,且,則向量與的夾角為()A. B.C. D.10.我國古代數(shù)學(xué)名著《算法統(tǒng)宗》是明代數(shù)學(xué)家程大位(1533-1606年)所著.該書中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”.其意思是:“一座7層塔共掛了381盞燈,且下一層燈數(shù)是上一層的2倍,則可得塔的最頂層共有燈幾盞?”.若改為“求塔的最底層幾盞燈?”,則最底層有()盞.A.192 B.128C.3 D.111.已知拋物線上的點到該拋物線焦點的距離為,則拋物線的方程是()A. B.C. D.12.如圖,在三棱錐中,點E在上,滿足,點F為的中點,記分別為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),是的導(dǎo)函數(shù),則______14.已知拋物線C:,經(jīng)過點P(4,1)的直線l與拋物線C相交于A,B兩點,且點P恰為AB的中點,F(xiàn)為拋物線的焦點,則______15.在數(shù)列中,,,則數(shù)列的前6項和為___________.16.已知等比數(shù)列滿足,,公比,則的前2021項和______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在△中,已知、、分別是三內(nèi)角、、所對應(yīng)的邊長,且(Ⅰ)求角的大?。唬á颍┤?,且△的面積為,求.18.(12分)在中,角A、B、C的對邊分別為a、b、c,已知,且.(1)求的面積;(2)若a、b、c成等差數(shù)列,求b的值.19.(12分)已知橢圓的左、右焦點分別為,且,直線過與交于兩點,的周長為8(1)求的方程;(2)過作直線交于兩點,且向量與方向相同,求四邊形面積的取值范圍20.(12分)如圖,正方形和四邊形所在的平面互相垂直,.(1)求證:平面;(2)求平面與平面的夾角.21.(12分)已知等差數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)求的最大值及相應(yīng)的的值.22.(10分)設(shè)拋物線的焦點為,點在拋物線上,且,橢圓右焦點也為,離心率為(1)求拋物線方程和橢圓方程;(2)若不經(jīng)過的直線與拋物線交于、兩點,且(為坐標(biāo)原點),直線與橢圓交于、兩點,求面積的最大值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將直線方程化為斜截式,由此確定斜率;根據(jù)斜率和傾斜角關(guān)系可得結(jié)果.【詳解】設(shè)直線的傾斜角為,則,由得:,則斜率,.故選:A.2、C【解析】設(shè)圖中直角三角形邊長分別為a,b,則斜邊為,則可表示出陰影面積和正方形面積,根據(jù)圖象關(guān)系,可得即可得答案.【詳解】設(shè)圖中全等的直角三角形的邊長分別為a,b,則斜邊為,如圖所示:則四個直角三角形的面積為,正方形的面積為,由圖象可得,四個直角三角形面積之和小于等于正方形的面積,所以,當(dāng)且僅當(dāng)時等號成立,所以對任意實數(shù)和,有,當(dāng)且僅當(dāng)時等號成立.故選:C3、D【解析】根據(jù)四點共面的向量表示,可得結(jié)果.【詳解】由共面知,故選:【點睛】本題主要考查空間中四點共面的向量表示,屬基礎(chǔ)題.4、A【解析】由題目條件可得,即,然后利用復(fù)數(shù)的運算法則化簡.【詳解】因為,所以,則故復(fù)數(shù)的虛部為.故選:A.【點睛】本題考查復(fù)數(shù)的相關(guān)概念及復(fù)數(shù)的乘除運算,按照復(fù)數(shù)的運算法則化簡計算即可,較簡單.5、D【解析】結(jié)合雙曲線定義的有關(guān)知識確定正確選項.【詳解】圓圓心為,半徑為,依題意可知,結(jié)合雙曲線的定義可知,的軌跡為雙曲線的一支.故選:D6、C【解析】先求斜率,再求傾斜角即可【詳解】解:直線的斜截式方程為,∴直線的斜率,∴傾斜角,故選:C【點睛】本題主要考查直線的傾斜角與斜率,屬于基礎(chǔ)題7、D【解析】根據(jù)圓心坐標(biāo)及半徑,即可得到圓的方程.【詳解】因為圓心為,半徑為,所以圓的方程為:.故選:D.8、B【解析】按照框圖考慮成立和不成立即可求解.【詳解】因為,,,所以輸入,當(dāng)成立時,,即,解得,,滿足條件;當(dāng)不成立時,,即,解得,,不滿足條件;故.故選:B.9、B【解析】先求出向量與的夾角的余弦值,即可求出與的夾角.【詳解】,所以,∴,∴,∴,又∵,∴與的夾角為.故選:B.10、A【解析】根據(jù)題意,轉(zhuǎn)化為等比數(shù)列,利用通項公式和求和公式進行求解.【詳解】設(shè)這個塔頂層有盞燈,則問題等價于一個首項為,公比為2的等比數(shù)列的前7項和為381,所以,解得,所以這個塔的最底層有盞燈.故選:A.11、B【解析】由拋物線知識得出準(zhǔn)線方程,再由點到焦點的距離等于其到準(zhǔn)線的距離求出,從而得出方程.【詳解】由題意知,則準(zhǔn)線為,點到焦點的距離等于其到準(zhǔn)線的距離,即,∴,則故選:B.12、B【解析】利用空間向量加減、數(shù)乘的幾何意義,結(jié)合三棱錐用表示出即可.【詳解】由題設(shè),,,,.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)的加法法則,對求導(dǎo),再求即可.【詳解】由題設(shè),,所以.故答案為:14、9【解析】過A、、作準(zhǔn)線的垂線且分別交準(zhǔn)線于點、、,根據(jù)拋物線的定義可知,由梯形的中位線的性質(zhì)得出,進而可求出的結(jié)果.【詳解】由拋物線,可知,則,所以拋物線的焦點坐標(biāo)為,如圖,過點A作垂直于準(zhǔn)線交準(zhǔn)線于,過點作垂直于準(zhǔn)線交準(zhǔn)線于,過點作垂直于準(zhǔn)線交準(zhǔn)線于,由拋物線的定義可得,再根據(jù)為線段的中點,而四邊形為梯形,由梯形的中位線可知,則,所以.故答案為:9.15、129【解析】依次寫出前6項,即可求得數(shù)列的前6項和.【詳解】數(shù)列中,,則,,,則數(shù)列的前6項和為故答案為:12916、【解析】根據(jù)等比數(shù)列的求和公式求解即可.【詳解】因為等比數(shù)列滿足,,公比,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用余弦定理和得到關(guān)于角A的關(guān)系式,求解A(II)再結(jié)合正弦面積公式得到三角形的邊長的求解【詳解】解:(Ⅰ)在△ABC中,(Ⅱ)由,得18、(1);(2).【解析】(1)先利用數(shù)量積和余弦值得到,再利用面積公式計算即得結(jié)果;(2)根據(jù)等差數(shù)列得到,再結(jié)合余弦定理進行運算得到關(guān)于b的關(guān)系,求值即可.【詳解】(1)由得,所以,所以,所以,所以;(2)因為a、b、c成等差數(shù)列,所以,由余弦定理得,即,解得.19、(1);(2).【解析】(1)根據(jù)給定條件直接求出半焦距,及長半軸長即可作答.(2)根據(jù)給定條件結(jié)合橢圓的對稱性可得四邊形為平行四邊形,設(shè)出直線l的方程,與橢圓C的方程聯(lián)立,借助韋達定理、對勾函數(shù)性質(zhì)計算作答.【小問1詳解】依題意,橢圓半焦距,由橢圓定義知,的周長,解得,,因此橢圓的方程為.【小問2詳解】依題意,直線的斜率不為0,設(shè)直線的方程為,,由消去并整理得:,則,,因與方向相同,即,又橢圓是以原點O為對稱中心的中心對稱圖形,于是得,即四邊形為平行四邊形,其面積,則,令,則,則,顯然在上單調(diào)遞增,則當(dāng)時,,即,從而可得,所以四邊形面積的取值范圍為.【點睛】結(jié)論點睛:過定點的直線l:y=kx+b交圓錐曲線于點,,則面積;過定點直線l:x=ty+a交圓錐曲線于點,,則面積20、(1)證明見解析(2)【解析】(1)由題意可證得,所以以C為坐標(biāo)原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,利用空間向量證明,(2)求出兩個平面的法向量,利用空間向量求解【小問1詳解】∵平面平面,平面平面,∴平面,∴,以C為坐標(biāo)原點,所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,則,.設(shè)平面的法向量為,則,令,則,∵平面,∴∥平面.【小問2詳解】,設(shè)平面的法向量為,則,令,則.∴.由圖可知平面與平面的夾角為銳角,所以平面與平面的夾角為.21、(1)(2)當(dāng)或時,有最大值是20【解析】(1)用等差數(shù)列的通項公式即可.(2)用等差數(shù)列的求和公式即可.【小問1詳解】在等差數(shù)列中,∵,∴,解得,∴;【小問2詳解】∵,∴,∴當(dāng)或時,有最大值是2022、(1)拋物線方程為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024甲乙雙方關(guān)于銅門制造與安裝的合同協(xié)議書
- 專業(yè)漁業(yè)承包經(jīng)營協(xié)議樣本2024版B版
- 美術(shù)探索之路
- 復(fù)料廠的勞動合同(2篇)
- 大產(chǎn)權(quán)售房合同(2篇)
- 4 公民的基本權(quán)利和義務(wù)第2課時公民的基本義務(wù)(說課稿)2024-2025學(xué)年統(tǒng)編版道德與法治六年級上冊
- 《礦井主要災(zāi)害事故防治與應(yīng)急避災(zāi)》培訓(xùn)課件2025
- 工程承包居間簡單合同范本
- 金融扶貧幫扶協(xié)議書
- 2024淘寶年度合作伙伴產(chǎn)品研發(fā)合同模板2篇
- 健康食品開發(fā)及生產(chǎn)協(xié)議
- 散狀料上料安全操作規(guī)程模版(3篇)
- 2025戶外品牌探路者線上新媒體運營方案
- 《個案工作介入涉罪未成年人的家庭幫教研究》
- 2024-2025學(xué)年人教版地理七年級上冊期末復(fù)習(xí)訓(xùn)練題(含答案)
- 統(tǒng)編版(2024新版)七年級上冊道德與法治期末綜合測試卷(含答案)
- 教育部中國特色學(xué)徒制課題:基于中國特色學(xué)徒制的新形態(tài)教材建設(shè)與應(yīng)用研究
- 2023年黑龍江日報報業(yè)集團招聘工作人員考試真題
- 安全管理人員安全培訓(xùn)教材
- 2025年護理質(zhì)量與安全管理工作計劃
- (T8聯(lián)考)2025屆高三部分重點中學(xué)12月第一次聯(lián)考評物理試卷(含答案詳解)
評論
0/150
提交評論