版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云
計(jì)
算
時(shí)
代
的
社
交
網(wǎng)
絡(luò)
平
臺(tái)
和
技
術(shù)張智威副院長(zhǎng),研究院,谷歌中國(guó)教授,電機(jī)工程系,加州大學(xué)2/16/2011
Ed
Chang
1ChinaOpportunityChina
&
US
in
2006-07180
million
208
million60
million
60million
500
million
180million600
k72
kChinaU.S.2Mobile
PhonesEngineering
Graduates2/16/2011(125%)(13%)(190%)
(129%)InternetPopulationBroadband
UsersEd
Chang·Size(~700)-200
engineers-400other
employees—Almost
100internsLocations-Beijing
(2005)—Taipei(2006)—Shanghai(2007)Google
China2/16/2011●OrganizingtheWorld'sInformation,Socially·社區(qū)平
臺(tái)
(SocialPlatform)·云運(yùn)
算
(Cloud
Computing)·結(jié)論與前瞻(Concluding
Remarks)2/16/2011Ed
Chang40
□2/16/2011Ed
Chang
5-jpg.htmO.jpgLmsgWeb
1.0htmhtm.htm.htm.htm.docO
OWebwith
People(2.0)doc2/16/2011htmEd
Chang-jpgO
Omsg,.xls.htm.htm.htm-jpgmsgO
oO
Oa
e6.msg.xls.htm-jpgO-jpgOO.htmApp(Gadget)
.doc+Social
Platformspp(GaeEdChang2/16/2011.htmmsg.htmG
0ae7oDoneaddapplicationadd
applicationEd
Chang盤prafile
edit?
scrapboolphotosvideos○
teatimoniolsask
fnendsApps
editMusic
iLike面HcroscopesFunWall
by
Sl..listsmessagesupdatessettingsstartFlixster
Movies
食食☆☆☆addapolicatien
e
o
k
s
i
a
ppesli
ba
oik
e
riiRlilRc
d
o
us
nen
ye
aadvikl
ao
nooiounr★lv女esmicayrsh☆eadinigtorruwaeszaaccnmcanoveaucroisanmokgeotacewoacPeeapplicationdirectoryHome>EdChang>applicationdirectory<previous
I
next>
h
t
o
o
tA
t
h
e
Ir
i
o
ioo
sa
aapnt
mim
tililoy
hnadt
mh
l
i
a
o
eTw
pri
eetsn
fisk
sbt
i
ol
mpetitive
typing
game.Compete
against
yourfriends
and
thew合h由o女le音☆addapplicatiengcnroar-evefiort
oin
thew
sraoninmaclndgeRscool有南urthprassyothemwixhasolu,sosyspkoacanthen,sasneahve!5laswatarenimnol1ewaracwurnaos
ec
a
t
o
i
te
with
friends.Create
and
challenge
friends
to
movieesasttatervaoimilr
msuwirespanmfoidvnmos
ahertingotraMeetmovieeezrzauihqSDookmarks
Iools
LelpO
htp://AcoDrectory.asoxMG-In
…
EectricalaCom
… arkut
applicatian
diractory
Mozilla
Firafax
Horoscopes
山出擊合臺(tái)Login
G-C..echangP
1ogohGetyourhoroscopes
-Updated
every
other
day.MGooge,com-e
…QCdetdit
Yew
HttoryH
inenetfewsR…orkutDorkut-applic-|Flixster2ht
-scrkot.-?E"E*Pteet32eneL?*VTransferninodatafromlstbe.tanva.
cn
…star
whdbwnEtlere
PNeP@
oocd-c?d.
htee//ebedenyeE0m回
區(qū)資用友望入來(lái)吧郵件姓名發(fā)送道讀我要基發(fā)逐語(yǔ)》eee-eeeee-MozillaFiretexCle
Edit
Yew
Htgtory
Bookmarks
我的主頁(yè)
資料
圍友我的朋友圈|我的擁友wusmIoob
Eep來(lái)筆
站子PmnCagem
mas禮瘤
得價(jià)
蛋縣薄影集日記uanehaeg回到自己(0e●烏三巴托蒙古●呼和潔料●大西■濟(jì)南,鄭合肥哈爾濱長(zhǎng)春陽(yáng)朝鮮平壤首爾韓國(guó)日本0示京回
區(qū)MGoode
.com-Irbox(49)-edchang@g
…△成都●重莊費(fèi)陽(yáng)●星明武漢
南昌福州
約魚(yú)島●臺(tái)北拉薩不舟孟加拉國(guó)緬卸●柳光可富汗
●伊斯蘭堡巴基斯坦●新語(yǔ)里
尼泊名mee
MoyillaFiretoxCleEdit
Yew
Hgtory
Bookmsrks
Iook
8。天準(zhǔn)來(lái)吧·我的朋友型MoPeEPonoo00--t://see
srye.e.
-104●網(wǎng)斯培納
業(yè)
言爾吉斯斯組塔吉克斯坦、老過(guò)越南西沙群島G
S供羅斯聯(lián)邦■南速門NS●河內(nèi)
不砂桿應(yīng)Hep號(hào)。天涯來(lái)吧-蘋津完地圖數(shù)璃@2007
Mm
sta天涯來(lái)E-calo_qu的個(gè)人資料2WheeweEtlere●烏毒木齊克新●西安Done●●印度●●●i置化縣還花因區(qū)涿底縣—懷來(lái)縣aig
主于滿塊自治星共有20名用戶在比區(qū)域(第1頁(yè))共5頁(yè))eyuch
老湯翻火點(diǎn)擊查看細(xì)節(jié)信縣縣承
德
縣意昌
平區(qū)大興區(qū)順交區(qū)
平谷區(qū)
Q
遷西縣大廠回族自演縣寶坻是右照程尚
義
縣丹和縣天
鎮(zhèn)
縣陽(yáng)高
縣張北縣“懷安縣MGcodle.co
…8
天涯*-
8
天遵來(lái)吧…
8o
天蓮來(lái)吧
…Goole,co
…
8o
天通來(lái)吧…d
OpenSoa
…
C]Goode地…C]Develoer
…MGoode.co
…人ede
tdit
Yew
Htgtory
Bookmarke
Iook
Hepe
http:/Laba.tanya.onAalba/FiendMap?d=14914947603760770386其丘縣易縣武
清
縣地重稱柳意00g
spabccog-薛
縣廣民縣渾
源
縣天涯來(lái)吧MozillaFirefex深水縣高碎店市市太同
縣陽(yáng)原縣王田縣隆化縣mg承
潔
縣DoaCa下一頁(yè)5
翼
后Done○netbt區(qū)2/16/2011
Ed
Chang
12開(kāi)
放
社
區(qū)
平
臺(tái)Linked
inFriends
rciet
siesvilorkut
Linked
in
hi5
sale
force.comorkut
Linked
hi5
sale
force.comorkutLinked
inhi5面sale
force.comOpenSocial開(kāi)
放
社
區(qū)
平
臺(tái)我是誰(shuí)2/16/2011Ed
Chang
17社區(qū)平臺(tái)
我
的
朋
友他的活動(dòng)Fle
Edit
yewHytoryBookmarksIookLtep ho:Aabs
tnva
cnAsea
FustrtendsMGoode
.com-In
…
G]ooe
gadget
…
a
OperSoosl
Rat我的主而資料
朋友
采吧
帖子
彩集
日記我的朋友圈|我的朋友上一步1郵件發(fā)送造請(qǐng)我要群發(fā)激請(qǐng)。香看我的期2*e-CRP?E天涯來(lái)吧我的朋友圖-MorillaFiretexTransferrino
data
from
lstbe.tenva.cn
…天涯來(lái)吧-我_留意薄Feui
Dashbord禮物Pam..Darren
Hiang-
…Googie.com-C
…8評(píng)價(jià)年常帶用|xPaiment..園到自己star3理hdA天涯來(lái)吧我的朋友圖-MorillaFiretexFle
Edit
yewHytoryBookmarksIookLep·
ho:Aabs
tnva
cnAsea
FustrtendsMGoode
.com-In
…
G]ooe
gadget
…[C]我的主而資料
朋友
采吧
帖子
彩集日記我的朋友圈|我的朋友上一步1品天源*吧-載-評(píng)價(jià)
智音清Darren
Hiang-
…G-C
…A郵件發(fā)送造語(yǔ)我要群發(fā)激請(qǐng)。園到自己五最選的,選的然是105-1過(guò)直進(jìn)QQQ91
五公司的執(zhí)
扣2白級(jí)的建直求金101-12-30白級(jí)的實(shí)班家金101-1230白領(lǐng)的家庭重金101-1230移殊好友hel人·
永遠(yuǎn)來(lái)吧(離線)擔(dān)量上線想片吧1男
3
7
歲
北
京項(xiàng)口和?也
Pam..
Peaiment..
2*oERstarTransferrino
data
from
lstbe.tenva.cn
…我的好友
×一FeraiDashboerd禮物
?22202m
C
3Frefsxx香看我的朋理書(shū)用一我是誰(shuí)他的東西社區(qū)平臺(tái)他的活動(dòng)2/16/2011
Ed
Chang
20開(kāi)
放
社
區(qū)
平
臺(tái)我
的
朋
友e
o:c-mmgrouppnetoa2?2210*
風(fēng)*
4015程片②關(guān)置來(lái)花要開(kāi)復(fù)的禮物6ktdryeeHstryEoomartsSe開(kāi)復(fù)四實(shí)來(lái)來(lái)地開(kāi)復(fù)的要集積片6t
6dt·~iGoooe
cn-Roos(a)-edcrgo
…1oosHnp:/hba,trraanuba/OFtVeN-151308031N3*1c8oK
**e-s
#州2讀的禮物tCst.的力收到1出
0LecMePFLm
3!要
的ula×c-他的主開(kāi)復(fù)收到的禮物曰
?驗(yàn)明
進(jìn)出&o
天準(zhǔn)書(shū)形·
我的繳東細(xì)回
C貿(mào)意startO2me-
開(kāi)案的民物孔品廟禮物’*nmAPo送出0menesDone21Social
GraphU
i
t
r
NPi294NANomViee103
KinuteBrowsePicturesUnie…-ViVseei
127
Im31Time
Ter
V
23
Nne=mo
intense
largestcirclerepre
entJoinorVisit
GroupsUni
iVt
st
s
i
li
nlllonrime
Per
Visit
!3s
MinutesBrowseMarketPlaceUn*a
sYtis=te2e
il,
n
*enAddAFriendUi
i
?s*y
6
Mi2l2
t
e*CAC
mp
et
comlargestaudienceis*tmoAn
inMtu…io3sineoadeSewevtember(BOr
soer
PFroiefnil
s)
Unieus
Visitem:21
Million
ri
V=*
.Vi-i26e2
a:iSM
Mon
inutesloin
or
Browse
NetworksRead
Discussion
Boards
a-uP
iVstia
s
%u2ttnSearch
for
Members
and
GroyPs
VuiP-…
ri…
iti
s
s
*0*4e7$mitl
MittesomniTiUueellioimniTU
o
e
t
ot5em64in
rl
ta
i
tnhsUniawe
Visitors:
14envime
Pr
Visaa
e
4=70
nutsneottTimUn
zce
e
ek:
t
tyStBalr
dbus
h2
d0e2represent
usage
intesityonrweouanesvncEd
Chang
23Darkeshade2/16/2011T
sri
:
o
M1
$i
suteominnt1:*ssimUWhat
UsersWant?·People
care
about
other
people一careabout
peoplethey
know·
一
connect
to
people
they
do
not
know一
about
who
other
people
are一aboutwhatotherpeople
are
doingDiscover
interesting
information一
basedonother
people2/16/2011
Ed
Chang
24InformationOverflow
ChallengeT
u
n
n
,too
many
choices
of·DesiringaSocialNetworkRecommendation
System2/16/2011
Ed
Chang
25appseopleaysammforoo··“/
ds
i
e
me
to
manageorkfulltwanreliaheenlinneonmysooRecommendationSystemu
n
mmendationoncoRdaForumommeyenitRComFrien···Application
Suggestion
·Ads
Matching2/16/2011
Ed
Chang
26Organizing
the
World's
Information,Socially·
社
區(qū)平
臺(tái)(Social
Platform)·云
運(yùn)
算(Cloud
Computing)·結(jié)論與前瞻(Concluding
Remarks)2/16/2011Ed
Chang27(3
)
算(4
的云計(jì)算空強(qiáng)無(wú)限無(wú)限··)是你的的云計(jì)就備在后設(shè)不錄何所登任無(wú)··(1)數(shù)據(jù)在云端·不怕丟失·不必備份(2
)
端升下級(jí)載在云動(dòng)必件不自軟··業(yè)界趨勢(shì):云計(jì)算時(shí)代的到來(lái)無(wú)限速度互聯(lián)網(wǎng)搜索:
云計(jì)算的例子2.分布式預(yù)處理數(shù)據(jù)以便為搜索提供服務(wù):
Gcogle
Infrastructure(thousands
sesdi
e
for
mass
data一
FileSystem一ngucproMa—taVeteateTatH* *
RPmutm-CooeA
Clto*eC.OteSeeCiePit*1邊
a7004#Cemmm
-hm1
rmCeat
conputs?-
Cloud
Computing
inraetrguesy
BAEd
CSsnouhSm29
CsOaltm
Jn
msE+eaooglIn
limodity
servers
arcund
theworldofco1.用戶輸入查詢關(guān)鍵字3.返回搜索結(jié)果2/16/2011netEelermCemuoudtse2145541335245341352141554254331521312345133352115241355125Collaborative
FilteringGiven
a
matrix
that“encodes”data2/16/2011
Ed
Chang
30214554?133524?53?413521?455425?2
4335213123451333?52?1152?4435451245?Given
a
matrix
that“encodes
”dataManyapplications·User-Community·User-User·Ads
-User·Ads-Community·etc.(collaborativefiltering):Ed
Chang
31Communities2/16/2011UsersCollaborative
Filtering(CF)[Breese,Heckerman
and
Kadie
1998]·Memory-based—
h
il
fi
sm
i
r
,
)·Model-based—Build
a
model
of
relationship
between
subject
matters一Make
predictions
basedonthe
constructedmodelcstreolehprofineiglasts,simieareenrrilasemuwsiilar”samssr,aumrsisetugnBouiveDifferent
similarity
measures
yield
different
techniques一
ons
based
on
the
preferences
of
theseersictiueimilarake
p“sM2/16/2011
Ed
Chang
32Memory-Based
Model[Goldbertetal.1992;Resniket
al.1994;Konstant
et
al.1997]·
Pros一
Simplicity,avoid
model-building
stage·
Cons—MemoryandTimeconsuming,uses
the
entiredatabaseeverytimetomake
aprediction一
Cannotmake
prediction
ifthe
user
has
no
items
incommonwithother
users2/16/2011
Ed
Chang
33Model-Based
Model[Breese
et
al.1998;Hoffman
1999;Blei
et
al.2004]Pros一
it
t
is
much
smaller
than
the
一
nti
ery
the
model
instead
ofCons一
Model-buildingtakestimedatasetdiction,quererpeertheFastatasemodelllabiactuScala2/16/2011
Ed
Chang
34Algorithm
Selection
Criteria
S
al
i
commendation·CloudComputing!ngReainmeTr-ticalableNear-re·
e
t
it
r
i
gs
r
irablecityDesasciantianhTwaldealmenCanIncr2/16/2011
Ed
Chang
35Model-based
PriorWorkLatent
Semantic
Analysis
(LSA)·
ProbabilisticLSA(PLSA)··Latent
Dirichlet
Allocation(LDA)2/16/2011
Ed
Chang
36·
Maphigh-dimensional
count
vectors
tolowerdimensional
representation
called
latent
semantic
space·BySVD
decomposition:A=UEVTDocs
Word×D
SWxD
WxTA=Word-document
co-occurrence
matrixU;
=How
likely
word
i
belongs
to
topic
jji
=How
significant
topic
j
isVi1=How
likely
topic
i
belongs
to
docjLatent
Semantic
Analysis(LSA)[Deerwester
et
al.1990]2/16/2011
Ed
Chang
37
Latent
Semantic
Analysis(cont.)·LSAkeepsk-largestsingular
values一
Low-rankapproximationtothe
original
matrix一
Savespace,de-noisifiedandreducesparsityOCS·Make
ecommendations
usingA—Word-word
similarity:A
AT-Doc-doc
similarity:?T
A—Word-doc
relationship:AWxKWxrDATopKxD2/16/2011ChangWordsEd38Probabilistic
Latent
Semantic
Analysis(PLSA)[Hoffman
1999;Hoffman20041Document
is
viewed
as
a
bag
ofwords··
|
,
licit
meaningiEMexpviwrsPlingd),deea,Plw)ityodel-P(robaMP··A
latent
semantic
layer
isconstructed
inbetweendocuments
and
words
·P(w,d)=P(d)P(w|d)=P(d)EzP(w|z)P(z|d)algorithm2/16/2011ChangEd39·
LDA[Blei
et
al.2003]一
Provideacompletegenerativemodelwith
Dirichlet
prior
·
AT
[Griffiths
&Steyvers
2004]一
Includeauthorshipinformation一
Document
iscategorizedbyauthors
andtopics·
ART[McCallum2004]一
Includeemailrecipientas
additional
information一
is
categorized
by
author,recipients
andtopics2/16/2011
Ed
Chang
40PLSAextensions·
PHITS[Cohn
&Chang
2000]·
e
t
u
[Cohn
&Hoffmann
2001]一
Model
contents(words)and
inter-connectivity
of
documentsHITSencePrrSA
andco-occLnPiombinationofocument-citaclA
li一CombinationalCollaborativeFiltering(CCF)·Fusemultiple
information—Alleviate
the
information
sparsity
problem·Hybridtrainingscheme—Gibbs
sampling
as
initializations
for
EM·Parallelization—Achieve
linear
speedup
with
the
numberof
machines2/16/2011
Ed
Chang
41algorithm·
Givenacollectionofco-occurrencedata-Community:C
={C?
,C?
,…,C}-User:U={u?
,u?
,…,um}一Description:D={d?
,d?
,…,dv}-Latentaspect:Z={z?
,z?
,…,zk}·Models—Baseline
models·Community-User(C-U)model·Community-Description(C-D)model-CCF:CombinationalCollaborativeFiltering·
Combines
both
baseline
modelsNotations2/16/2011ChangEd42·Communityis
viewed
as
a
bag
ofwords
·canddarerendered
conditionally·Gi
ent
pr
rodu
zword
d1.A
community
cischosenuniformly
2.A
topic
zisselectedfromP(z|c)3.Awordd
isgenerated
from
P(d|z)Chang
43hgcnaiecrtonss,firativpeneeen·Communityisviewed
as
a
bag
of
usersc
and
u
are
rendered
conditionallyindependentbyintroducingz■(
Generative
process,for
each
user
u
1.Acommunitycischosenuniformly
2.A
topic
zisselected
fromP(z|c)3.Auser
u
is
generatedfrom
P(u|z)2/16/2011
EdModelsCommunity-Description(C-D)model
BaselineCommunity-User(C-U)model
-Pros1.Cluster
communities
based
oncommunity
content(description
words)-Cons1.No
personalized
recommendation2.Donot
considerthe
overlapped
usersbetween
communitiesChang
441.C-U
matrix
information2.Cannot
take
similarity2/16/2011is
sparse,may
sufferfromsparsity
problemadvantage
of
contentbetween
communitiesEdModels(cont.)Community-Description(C-D)model
BaselineCommunity-User(C-U)model
-Pros1.Personalized*Conssuggestioncommunity·CCFcombines
both
baseline
models*A
community
isviewed
as-abag
of
users
AND
a
bag
ofwords*By
adding
C-U,CCF
can
performpersonalizedrecommendationwhichC-Dalone
cannot·By
adding
C-D,CCF
can
perform
betterpersonalizedrecommendationthan
C-Ualonewhich
may
sufferfrom
sparsity·Things
CCF
can
do
that
C-U
and
C-Dcannot-P(d)u),relate
user
to
word-Useful
for
user
targeting
adsCombinational
Filtering(CCF)model
C
P(c)—P(zlc)ZP(ulz)
P(dlz)U
dModelCCF2/16/2011CollaborativeChangEd45Algorithm
Requirements
S
al
i
commendationngReainmeTr-ticalableNear-reIncrementalTraining
is
Desirable2/16/2011
Ed
Chang
46ParallelizingCCFDetailsomitted2/16/2011
Ed
Chang
47(3
)
算(4
的云計(jì)算空強(qiáng)無(wú)限無(wú)限··)是你的的云計(jì)就備在后設(shè)不錄何所登任無(wú)··(1)數(shù)據(jù)在云端·不怕丟失·不必備份(2
)
端升下級(jí)載在云動(dòng)必件不自軟··業(yè)界趨勢(shì):云計(jì)算時(shí)代的到來(lái)無(wú)限速度ExperimentsonOrkut
Dataset·Data
description-Collected
on一
Two
types
ofJuly
26,2007data
were
extracted·Community-user,community-description
一312,385users—109,987communities·
—191,034
unique
Englishwords·Speedup·
Community
recommendation·U
m
i
milarity/clusteringtysiartylisimimunserCo2/16/2011Ed
Chang49Community
Recommendation·
Evaluation
Method一
No
ground-truth,no
user
clicks
available—Leave-one-out:randomly
delete
one
community
foreach
user一
Whether
the
deleted
community
can
be
recovered·
Evaluation
metric—Precisionand
Recall2/16/2011
Ed
Chang
50Lengthoftherecommendation
listPecertageObservations:
CCFoutperforms
C-U
e
cboe
u
Citi
C
Uu
nhascaserttermmeehr,todmjoinThe口
For
top20,precision/recall
of
CCFare
twice
higher
than
those
of
C-UNumber
of
communities
a
user
has
joinedEpredict2/16/2011Ed
Chang51·
The
Orkut
dataset
enjoys
a
linear
speedup
when
the
number
of2/16/2011
Ed
Chang
52machines
is
up
to
100
Reduces
the
training
time
from
one
day
to
less
than
14
minutes··RuntimeSpeedupMachinesTime(aee.)Specdup100.23310204,32621.3502.28040.510O1,01491.1200706116But,what
makes
the
speedup
slow
down
after
100
machines?Number
of
mnchinesSpeedup200RuntimeSpeedup(cont.)·Trainingtimeconsistsoftwo
parts:一
Computationtime(Comp)一
Communicationtime(Comm)sdoedupNumberofmachinesNumbarofmachines2/16/2011
Ed
Chang
53CCFSummary·CombinationalCollaborative
Filtering—Fuse
bags
ofwordsand
bags
of
usersinformation—Hybridtrainingprovides
better
adliitionsfor
EM
ratherthan
random一
Parallelizeto
handle
large-scaledatasetsngzaetiseini2/16/2011
Ed
Chang
54China'sContributionson/to
CloudComputing
Parallel
CCF Parallel
SVMs(Kernel
Machines)·
ParallelSpectral
Clustering·
Parallel
Expectation
Maximization
·ParallelAssociation
Mining·
Parallel
LDA2/16/2011
Ed
Chang
55Parallel
SVDSpeeding
up
SVMs
[NIPS
2007]·Approximate
MatrixFactorization·
Parallelization
Open
source
@/p/psvm·A
task
that
takes
7
dayson
1machinetakes
1
hourson500
machines350+downloads
since
December
072/16/2011
Ed
Chang
56≈XIncompleteCholesky
Factorization(ICF)p<<n→Conserve
Storage2/16/2011
Ed
Chang
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年高阻隔性封裝材料合作協(xié)議書(shū)
- 2024年SO2自動(dòng)采樣器及測(cè)定儀項(xiàng)目建議書(shū)
- 2024年數(shù)控組合機(jī)床項(xiàng)目建議書(shū)
- 2024年雙端面磨床項(xiàng)目合作計(jì)劃書(shū)
- 2024年致密熔鑄合成云母陶瓷項(xiàng)目發(fā)展計(jì)劃
- 2024年傳真保密機(jī)項(xiàng)目合作計(jì)劃書(shū)
- 2024年高分子復(fù)合著色材料項(xiàng)目合作計(jì)劃書(shū)
- Syringaldehyde-Standard-生命科學(xué)試劑-MCE
- Sulfadimethoxine-sodium-Standard-生命科學(xué)試劑-MCE
- 2024高一地理寒假作業(yè)同步練習(xí)題農(nóng)業(yè)的區(qū)位選擇含解析
- 中非合作會(huì)議峰會(huì)
- 加油站安全風(fēng)險(xiǎn)評(píng)估報(bào)告 - 事故發(fā)生可能性及后果分析
- 《世界遺產(chǎn)背景下的影響評(píng)估指南和工具包》
- 消防安全知識(shí)課件PPT
- 川2020G145-TY 四川省超限高層建筑抗震設(shè)計(jì)圖示
- 《夏洛的網(wǎng)》之“生命的價(jià)值”論文
- 2023年成都鐵路局招聘筆試參考題庫(kù)附帶答案詳解
- 小學(xué)信息技術(shù)教案《認(rèn)識(shí)鍵盤》
- 曲臂車高空作業(yè)車施工方案
- 腰椎ODI評(píng)分完整版
- 電氣改造工程施工方案施工組織設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論