版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
初一知識點總結(jié)初一知識點總結(jié)篇1
1、方程
含有未知數(shù)的等式叫做方程。
2、方程的解
能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
3、等式的性質(zhì)
①等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。
②等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。
4、一元一次方程
只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。
5、移項:
把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項。
6、解一元一次方程的一般步驟:
①去分母
②去括號
③移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)
④合并同類項
⑤將未知數(shù)的系數(shù)化為1
初一知識點總結(jié)篇2
正數(shù)和負數(shù)
⒈、正數(shù)和負數(shù)的概念
負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)
注意:①字母a可以表示任意數(shù),當a表示正數(shù)時,—a是負數(shù);當a表示負數(shù)時,—a是正數(shù);當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)
②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。
2、具有相反意義的量
若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
(1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人;
(2)0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。如:
(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。
有理數(shù)
(1)正整數(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))
(2)正分數(shù)和負分數(shù)統(tǒng)稱為分數(shù)
(3)正整數(shù),0,負整數(shù),正分數(shù),負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。
理解:只有能化成分數(shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分數(shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分數(shù),都是有理數(shù)。③整數(shù)也能化成分數(shù),也是有理數(shù)
注意:引入負數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。
初一知識點總結(jié)篇3
一、方程的有關(guān)概念
1.方程:含有未知數(shù)的等式就叫做方程。
2.一元一次方程:只含有一個未知數(shù)(元)x,未知數(shù)x的指數(shù)都是1(次),這樣的方程叫做一元一次方程。例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程。
3.方程的解:使方程中等號左右兩邊相等的未知數(shù)的值,叫做方程的解。
注:⑴方程的解和解方程是不同的概念,方程的解實質(zhì)上是求得的結(jié)果,它是一個數(shù)值(或幾個數(shù)值),而解方程的含義是指求出方程的解或判斷方程無解的過程。⑵方程的解的檢驗方法,首先把未知數(shù)的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結(jié)論。
二、等式的性質(zhì)
(1)等式兩邊都加上(或減去)同個數(shù)(或式子),結(jié)果仍相等。用式子形式表示為:如果a=b,那么ac=bc
(2)等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等,用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc
三、移項法則:
把等式一邊的某項變號后移到另一邊,叫做移項。
四、去括號法則
1.括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同.
2.括號外的因數(shù)是負數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號改變.
五、解方程的一般步驟
1.去分母(方程兩邊同乘各分母的最小公倍數(shù))
2.去括號(按去括號法則和分配律)
3.移項(把含有未知數(shù)的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4.合并(把方程化成ax=b(a0)形式)
5.系數(shù)化為1(在方程兩邊都除以未知數(shù)的系數(shù)a,得到方程的解x=ba)。
六、用方程思想解決實際問題的一般步驟
1.審:審題,分析題中已知什么,求什么,明確各數(shù)量之間的關(guān)系。
2.設(shè):設(shè)未知數(shù)(可分直接設(shè)法,間接設(shè)法)。
3.列:根據(jù)題意列方程。
4.解:解出所列方程。
5.檢:檢驗所求的解是否符合題意。
6.答:寫出答案(有單位要注明答案)。
七、有關(guān)常用應(yīng)用類型題及各量之間的關(guān)系
1、和、差、倍、分問題:
(1)倍數(shù)關(guān)系:通過關(guān)鍵詞語“是幾倍,增加幾倍,增加到幾倍,增加百分之幾,增長率……”來體現(xiàn)。
(2)多少關(guān)系:通過關(guān)鍵詞語“多、少、和、差、不足、剩余……”來體現(xiàn)。
2、等積變形問題:
“等積變形”是以形狀改變而體積不變?yōu)榍疤帷3S玫攘筷P(guān)系為:
①形狀面積變了,周長沒變;
②原料體積=成品體積。
3、勞力調(diào)配問題:
這類問題要搞清人數(shù)的變化,常見題型有:
(1)既有調(diào)入又有調(diào)出。
(2)只有調(diào)入沒有調(diào)出,調(diào)入部分變化,其余不變。
(3)只有調(diào)出沒有調(diào)入,調(diào)出部分變化,其余不變。
4、數(shù)字問題
(1)要搞清楚數(shù)的表示方法:一個三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個位數(shù)字為c(其中a、b、c均為整數(shù),且19,09,09)則這個三位數(shù)表示為:100a+10b+c
(2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n2表示;奇數(shù)用2n+1或2n1表示。
5、工程問題:
工程問題中的三個量及其關(guān)系為:工作總量=工作效率工作時間
6、行程問題:
(1)行程問題中的三個基本量及其關(guān)系:路程=速度時間。
(2)基本類型有
①相遇問題;
②追及問題;常見的還有:相背而行;行船問題;環(huán)形跑道問題。
7、商品銷售問題
有關(guān)關(guān)系式:
商品利潤=商品售價商品進價=商品標價折扣率商品進價
商品利潤率=商品利潤/商品進價
商品售價=商品標價折扣率
8、儲蓄問題
(1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率。利息的20%付利息稅
(2)利息=本金利率期數(shù)
本息和=本金+利息
利息稅=利息稅率(20%)
今天的內(nèi)容就介紹這里了。
初一知識點總結(jié)篇4
1.不等式:用符號,"≤","≥"表示大小關(guān)系的式子叫做不等式。
2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號">","F(x)同解。
(2)如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。
7.不等式的性質(zhì):
(1)如果x>y,那么yy;(對稱性)
(2)如果x>y,y>z;那么x>z;(傳遞性)
(3)如果x>y,而z為任意實數(shù)或整式,那么x+z>y+z;(加法則)
(4)如果x>y,z>0,那么xz>yz;如果x>y,zy,z>0,那么x÷z>y÷z;如果x>y,zy,m>n,那么x+m>y+n(充分不必要條件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))
8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般順序:
(1)去分母(運用不等式性質(zhì)2、3)
(2)去括號
(3)移項(運用不等式性質(zhì)1)
(4)合并同類項
(5)將未知數(shù)的系數(shù)化為1(運用不等式性質(zhì)2、3)
(6)有些時候需要在數(shù)軸上表示不等式的解集
10.一元一次不等式與一次函數(shù)的綜合運用:
一般先求出函數(shù)表達式,再化簡不等式求解。
11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
12.解一元一次不等式組的步驟:
(1)求出每個不等式的解集;
(2)求出每個不等式的解集的公共部分;(一般利用數(shù)軸)
(3)用代數(shù)符號語言來表示公共部分。(也可以說成是下結(jié)論)
13.解不等式的.訣竅
(1)大于大于取大的(大大大);
例如:X>-1,X>2,不等式組的解集是X>2
(2)小于小于取小的(小小小);
例如:X2,x>3,不等式組的解集是X>3
(2)同小取小
例如,x1,不等式組的解集是1
(4)大大小小不用找
例如,x3,不等式組無解
15.應(yīng)用不等式組解決實際問題的步驟
(1)審清題意
(2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組
(3)解不等式組
(4)由不等式組的解確立實際問題的解
(5)作答
16.用不等式組解決實際問題:其公共解不一定就為實際問題的解,所以需結(jié)合生活實際具體分析,最后確定結(jié)果。
初一知識點總結(jié)篇5
1、代數(shù)式
用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。
注意:
①代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號;
②代數(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式;
③代數(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。
代數(shù)式的書寫格式:
①代數(shù)式中出現(xiàn)乘號,通常省略不寫,如vt;
②數(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a;
③帶分數(shù)與字母相乘時,應(yīng)先把帶分數(shù)化成假分數(shù)。
④數(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略;
⑤在代數(shù)式中出現(xiàn)除法運算時,一般寫成分數(shù)的形式;注意:分數(shù)線具有“÷”號和括號的雙重作用。
⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面。
2、整式:單項式和多項式統(tǒng)稱為整式。
①單項式:
都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。
注意:
單獨的一個數(shù)或一個字母也是單項式;
單獨一個非零數(shù)的次數(shù)是0;
當單項式的系數(shù)為1或—1時,這個“1”應(yīng)省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。
②多項式:
幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。
③同類項:
所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
注意:
①同類項有兩個條件:a、所含字母相同;b、相同字母的指數(shù)也相同。
②同類項與系數(shù)無關(guān),與字母的排列順序無關(guān);
③幾個常數(shù)項也是同類項。
3、合并同類項法則:
把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
4、去括號法則
①根據(jù)去括號法則去括號:
括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“—”號,把括號和它前面的“—”號去掉,括號里各項都改變符號。
②根據(jù)分配律去括號:
括號前面是“+”號看成+1,括號前面是“—”號看成—1,根據(jù)乘法的分配律用+1或—1去乘括號里的每一項以達到去括號的目的。
5、添括號法則
添“+”號和括號,添到括號里的各項符號都不改變;添“—”號和括號,添到括號里的各項符號都要改變。
6、整式的運算:
整式的加減法:
(1)去括號;
(2)合并同類項。
初一知識點總結(jié)篇6
1、普查與抽樣調(diào)查
為了特定目的對全部考察對象進行的全面調(diào)查,叫做普查。
其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。
從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。
2、扇形統(tǒng)計圖
扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1)
圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°)
3、頻數(shù)直方圖
頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。
4、各種統(tǒng)計圖的特點
條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。
折線統(tǒng)計圖:能清楚地反映事物的變化情況。
扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。
初一知識點總結(jié)篇7
相反數(shù)
(1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù)。
(2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 備考會計基礎(chǔ)秀課件推
- 養(yǎng)老院老人康復(fù)理療師職業(yè)發(fā)展規(guī)劃制度
- 增收節(jié)支課件
- 2024年挖掘機租賃合同范本(含應(yīng)急維修服務(wù))3篇
- 2024年度生態(tài)園林樹木補種與養(yǎng)護管理合同3篇
- 大年夜學(xué)期末財務(wù)學(xué)課件期末溫習(xí)資料試卷
- 《肝癌與其他》課件
- 2024年版:工程機械短期租賃協(xié)議
- 《在大多數(shù)廣告中》課件
- 2025年四川貨運從業(yè)考試試題及答案詳解
- 年會策劃舞美搭建方案
- 河南省鶴壁市部分學(xué)校聯(lián)考2022-2023學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(含答案)
- 宿舍主任工作總結(jié)報告
- 2022版義務(wù)教育(生物學(xué))課程標準(附課標解讀)
- 自體脂肪填充后的護理
- 大學(xué)生勞動素養(yǎng)的現(xiàn)狀調(diào)查及影響因素分析
- 分體空調(diào)維修技術(shù)方案
- 慢性腎臟病臨床診療指南
- 成人氣管切開拔管中國專家共識解讀
- 隧道工程施工環(huán)境保護措施
- 網(wǎng)絡(luò)運行以及維護
評論
0/150
提交評論