陜西省渭南市臨渭區(qū)2023年數(shù)學(xué)高二上期末調(diào)研試題含解析_第1頁
陜西省渭南市臨渭區(qū)2023年數(shù)學(xué)高二上期末調(diào)研試題含解析_第2頁
陜西省渭南市臨渭區(qū)2023年數(shù)學(xué)高二上期末調(diào)研試題含解析_第3頁
陜西省渭南市臨渭區(qū)2023年數(shù)學(xué)高二上期末調(diào)研試題含解析_第4頁
陜西省渭南市臨渭區(qū)2023年數(shù)學(xué)高二上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

陜西省渭南市臨渭區(qū)2023年數(shù)學(xué)高二上期末調(diào)研試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在正方體中,下列幾種說法不正確的是A. B.B1C與BD所成的角為60°C.二面角的平面角為 D.與平面ABCD所成的角為2.在等差數(shù)列中,,則等于A.2 B.18C.4 D.93.已知橢圓C:的左,右焦點(diǎn),過原點(diǎn)的直線l與橢圓C相交于M,N兩點(diǎn).其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.4.若向量,,則()A. B.C. D.5.如圖,在平行六面體中,設(shè),,,用基底表示向量,則()A. B.C. D.6.若拋物線上一點(diǎn)到焦點(diǎn)的距離為5,則點(diǎn)的坐標(biāo)為()A. B.C. D.7.在中,若,,則外接圓半徑為()A. B.C. D.8.兩圓x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直線的方程為()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=09.若函數(shù)在區(qū)間上有兩個極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.10.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣方法,抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機(jī)編號,則抽取的42人中,編號落入?yún)^(qū)間[481,720]的人數(shù)為A.11 B.12C.13 D.1411.過雙曲線右焦點(diǎn)F作雙曲線一條漸近線的垂線,垂足為A,與另一條漸近線交于點(diǎn)B,若,則雙曲線C的離心率為()A.或 B.2或C.或 D.2或12.設(shè)是區(qū)間上的連續(xù)函數(shù),且在內(nèi)可導(dǎo),則下列結(jié)論中正確的是()A.的極值點(diǎn)一定是最值點(diǎn)B.的最值點(diǎn)一定是極值點(diǎn)C.在區(qū)間上可能沒有極值點(diǎn)D.在區(qū)間上可能沒有最值點(diǎn)二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則的最小值為___________14.若,均為正數(shù),且,(1)的最大值為;(2)的最小值為;(3)的最小值為;(4)的最小值為,則結(jié)論正確的是__________15.已知直線和互相平行,則實(shí)數(shù)的值為___________.16.若橢圓和圓(c為橢圓的半焦距)有四個不同的交點(diǎn),則橢圓的離心率的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的展開式中二項(xiàng)式系數(shù)和為16(1)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);(2)設(shè)展開式中的常數(shù)項(xiàng)為p,展開式中所有項(xiàng)系數(shù)的和為q,求18.(12分)設(shè)橢圓:的左頂點(diǎn)為,右頂點(diǎn)為.已知橢圓的離心率為,且以線段為直徑的圓被直線所截得的弦長為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn),且點(diǎn)在第一象限,點(diǎn)關(guān)于軸對稱點(diǎn)為點(diǎn),直線與直線交于點(diǎn),若直線斜率大于,求直線的斜率的取值范圍.19.(12分)根據(jù)下列條件求圓的方程:(1)圓心在點(diǎn)O(0,0),半徑r=3(2)圓心在點(diǎn)O(0,0),且經(jīng)過點(diǎn)M(3,4)20.(12分)已知橢圓C:短軸長為2,且點(diǎn)在C上(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)、為橢圓的左、右焦點(diǎn),過的直線l交橢圓C與A、B兩點(diǎn),若的面積是,求直線l的方程21.(12分)在對某老舊小區(qū)污水分流改造時(shí),需要給該小區(qū)重新建造一座底面為矩形且容積為324立方米的三級污水處理池(平面圖如圖所示).已知池的深度為2米,如果池四周圍墻的建造單價(jià)為400元/平方米,中間兩道隔墻的建造單價(jià)為248元/平方米,池底的建造單價(jià)為80元/平方米,池蓋的建造單價(jià)為100元/平方米,建造此污水處理池相關(guān)人員的勞務(wù)費(fèi)以及其他費(fèi)用是9000元.(水池所有墻的厚度以及池底池蓋的厚度按相關(guān)規(guī)定執(zhí)行,計(jì)算時(shí)忽略不計(jì))(1)現(xiàn)有財(cái)政撥款9萬元,如果將污水處理池的寬建成9米,那么9萬元的撥款是否夠用?(2)能否通過合理的設(shè)計(jì)污水處理池的長和寬,使總費(fèi)用最低?最低費(fèi)用為多少萬元?22.(10分)已知圓M經(jīng)過原點(diǎn)和點(diǎn),且它的圓心M在直線上.(1)求圓M的方程;(2)若點(diǎn)D為圓M上的動點(diǎn),定點(diǎn),求線段CD的中點(diǎn)P的軌跡方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】在正方體中,利用線面關(guān)系逐一判斷即可.【詳解】解:對于A,連接AC,則AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正確;對于B,∵B1C∥D,即B1C與BD所成的角為∠DB,連接△DB為等邊三角形,∴B1C與BD所成的角為60°,故B正確;對于C,∵BC⊥平面A1ABB1,A1B?平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B?平面A1BC,AB?平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正確;對于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1與平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D錯誤故選D【點(diǎn)睛】本題考查了線面的空間位置關(guān)系及空間角,做出圖形分析是關(guān)鍵,考查推理能力與空間想象能力2、D【解析】利用等差數(shù)列性質(zhì)得到,,計(jì)算得到答案.詳解】等差數(shù)列中,故選D【點(diǎn)睛】本題考查了等差數(shù)列的計(jì)算,利用性質(zhì)可以簡化運(yùn)算,是解題的關(guān)鍵.3、D【解析】由題設(shè)易知四邊形為矩形,可得,結(jié)合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由橢圓的對稱性及矩形性質(zhì)可得,由已知條件得到,進(jìn)而得到橢圓參數(shù)的齊次式求離心率范圍.4、D【解析】由向量數(shù)量積的坐標(biāo)運(yùn)算求得數(shù)量積,模,結(jié)合向量的共線定義判斷【詳解】由已知,,,與不垂直,若,則,,但是,,因此與不共線故選:D5、B【解析】直接利用空間向量基本定理求解即可【詳解】因?yàn)樵谄叫辛骟w中,,,,所以,故選:B6、C【解析】設(shè),由拋物線的方程可得準(zhǔn)線方程為,由拋物線的性質(zhì)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,求出,解出縱坐標(biāo),進(jìn)而求出【詳解】由題意可得,解得,代入拋物線的方程,解得,所以的坐標(biāo),故選:C.7、A【解析】根據(jù)三角形面積公式求出c,再由余弦定理求出a,根據(jù)正弦定理即可求外接圓半徑.【詳解】,,,解得由正弦定理可得:,所以故選:A8、C【解析】兩圓方程相減得出公共弦所在直線的方程.【詳解】兩圓方程相減得,即x﹣2y+6=0則公共弦所在直線的方程為x﹣2y+6=0故選:C9、D【解析】由題意,即在區(qū)間上有兩個異號零點(diǎn),令,利用函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系判斷單調(diào)性,數(shù)形結(jié)合即可求解【詳解】解:由題意,即在區(qū)間上有兩個異號零點(diǎn),構(gòu)造函數(shù),則,令,得,令,得,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又時(shí),,時(shí),,且,所以,即,所以的范圍故選:D10、B【解析】使用系統(tǒng)抽樣方法,從840人中抽取42人,即從20人抽取1人∴從編號1~480的人中,恰好抽取480/20=24人,接著從編號481~720共240人中抽取240/20=12人考點(diǎn):系統(tǒng)抽樣11、D【解析】求得點(diǎn)A,B的坐標(biāo),利用轉(zhuǎn)化為坐標(biāo)比求解.【詳解】不妨設(shè)直線,由題意得,解得,即;由得,即,因?yàn)?,所以,所以?dāng)時(shí),,;當(dāng)時(shí),,則,故選:D12、C【解析】根據(jù)連續(xù)函數(shù)的極值和最值的關(guān)系即可判斷【詳解】根據(jù)函數(shù)的極值與最值的概念知,的極值點(diǎn)不一定是最值點(diǎn),的最值點(diǎn)不一定是極值點(diǎn).可能是區(qū)間的端點(diǎn),連續(xù)可導(dǎo)函數(shù)在閉區(qū)間上一定有最值,所以選項(xiàng)A,B,D都不正確,若函數(shù)在區(qū)間上單調(diào),則函數(shù)在區(qū)間上沒有極值點(diǎn),所以C正確故選:C.【點(diǎn)睛】本題主要考查函數(shù)的極值與最值的概念辨析,屬于容易題二、填空題:本題共4小題,每小題5分,共20分。13、25【解析】根據(jù),,且,由,利用基本不等式求解.【詳解】因?yàn)椋?,且,所以,?dāng)且僅當(dāng),即時(shí),等號成立,所以的最小值為25,故答案為:2514、(1)(2)(4).【解析】利用基本不等式求的最大值可判斷(1);利用“”的妙用以及基本不等式可判斷(2);將所求代數(shù)式轉(zhuǎn)化為關(guān)于的二次函數(shù)結(jié)合由二次函數(shù)的性質(zhì)可得最值判斷C、D,進(jìn)而可得正確答案.【詳解】對于(1):因?yàn)?,均為正?shù),且,則有,當(dāng)且僅當(dāng)時(shí)等號成立,即的最大值為,故(1)正確;對于(2):因?yàn)?,?dāng)且僅當(dāng)時(shí)等號成立,即的最小值為,故(2)正確;對于(3):因?yàn)椋?,在上單調(diào)遞減,無最小值,故(3)不正確;對于(4):,當(dāng)且僅當(dāng)時(shí)等號成立,即的最小值為,故(4)正確.故答案為:(1)(2)(4).15、【解析】根據(jù)直線平行的充要條件即可求出實(shí)數(shù)的值.詳解】由直線和互相平行,得,即.故答案為:.16、【解析】當(dāng)圓的直徑介于橢圓長軸和短軸長度范圍之間時(shí),橢圓和圓有四個不同的焦點(diǎn),由此列不等式,解不等式求得橢圓離心率的取值范圍.【詳解】由于橢圓和圓有四個焦點(diǎn),故圓的直徑介于橢圓長軸和短軸長度范圍之間,即.由得,兩邊平方并化簡得,即①.由得,兩邊平方并化簡得,解得②.由①②得.故填.【點(diǎn)睛】本小題主要考查橢圓和圓的位置關(guān)系,考查橢圓離心率取值范圍的求法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由二項(xiàng)式系數(shù)和的性質(zhì)得出,再由性質(zhì)求出展開式中二項(xiàng)式系數(shù)最大的項(xiàng);(2)由通項(xiàng)得出,利用賦值法得出,再求解【小問1詳解】由題意可得,解得.,展開式中二項(xiàng)式系數(shù)最大的項(xiàng)為;【小問2詳解】,其展開式的通項(xiàng)為,令,得∴常數(shù)項(xiàng)令,可得展開式中所有項(xiàng)系數(shù)的和為,∴18、(1);(2).【解析】(1)根據(jù)直線被圓截得的弦長為,由解得,再由離心率結(jié)合求解。(2)設(shè),則,得到直線:;直線:,聯(lián)立求得,再根據(jù)線斜率大于,求得,然后由求解.【詳解】(1)以線段為直徑的圓的圓心為:,半徑,圓心到直線的距離,直線被圓截得的弦長為,解得:,又橢圓離心率,∴,,橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè),其中,,則,∴,,則直線為:;直線為:,由得:,∴,∴,∴,令,,則,∴,∵∴,∴,即.【點(diǎn)睛】本題主要考查橢圓方程和幾何性質(zhì)以及直線與圓,橢圓的位置關(guān)系的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.19、(1)x2+y2=9(2)x2+y2=25【解析】(1)直接根據(jù)圓心坐標(biāo)和半徑,即可得到答案;(2)利用兩點(diǎn)間的距離公式,求出圓的半徑,即可得到答案;【小問1詳解】根據(jù)題意,圓心在點(diǎn)O(0,0),半徑r=3,則要求圓的方程為x2+y2=9;【小問2詳解】圓心在點(diǎn)O(0,0),且經(jīng)過點(diǎn)M(3,4),要求圓的半徑r==5,則要求圓的方程為x2+y2=25;20、(1);(2)或.【解析】(1)根據(jù)短軸長求出b,根據(jù)M在C上求出a;(2)根據(jù)題意設(shè)直線l為,與橢圓方程聯(lián)立得根與系數(shù)關(guān)系,根據(jù)=即可求出m的值.【小問1詳解】∵短軸長為2,∴,∴,又∵點(diǎn)在C上,∴,∴,∴橢圓C的標(biāo)準(zhǔn)方程為;【小問2詳解】由(1)知,∵當(dāng)直線l斜率為0時(shí),不符合題意,∴設(shè)直線l的方程為:,聯(lián)立,消x得:,∵,∴設(shè),,則,∵,∴,∴,即,解得,∴直線l的方程為:或.21、(1)不夠;(2)將污水處理池建成長為16.2米,寬為10米時(shí),建造總費(fèi)用最低,最低費(fèi)用為90000元.【解析】(1)根據(jù)題意結(jié)合單價(jià)直接計(jì)算即可得出;(2)設(shè)污水處理池的寬為米,表示出總費(fèi)用,利用基本不等式可求.【小問1詳解】如果將污水處理池的寬建成9米,則長為(米),建造總費(fèi)用為:(元)因?yàn)?,所以如果污水處理池的寬建?米,那么9萬元的撥款是不夠用的.【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論