上海市徐匯區(qū)位育中學2023-2024學年高二上數(shù)學期末統(tǒng)考試題含解析_第1頁
上海市徐匯區(qū)位育中學2023-2024學年高二上數(shù)學期末統(tǒng)考試題含解析_第2頁
上海市徐匯區(qū)位育中學2023-2024學年高二上數(shù)學期末統(tǒng)考試題含解析_第3頁
上海市徐匯區(qū)位育中學2023-2024學年高二上數(shù)學期末統(tǒng)考試題含解析_第4頁
上海市徐匯區(qū)位育中學2023-2024學年高二上數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市徐匯區(qū)位育中學2023-2024學年高二上數(shù)學期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知p:,那么p的一個充分不必要條件是()A. B.C. D.2.已知,若,則的取值范圍為()A. B.C. D.3.已知命題“”為真命題,“”為真命題,則()A.為假命題,為真命題 B.為真命題,為真命題C.為真命題,為假命題 D.為假命題,為假命題4.若向量則()A. B.3C. D.5.已知向量,則“”是“”的()A充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.曲線在處的切線如圖所示,則()A. B.C. D.7.下列關(guān)于命題的說法錯誤的是A.命題“若,則”的逆否命題為“若,則”B.“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件C.命題“,使得”的否定是“,均有”D.“若為的極值點,則”的逆命題為真命題8.已知等比數(shù)列的前項和為,若,,則()A.20 B.30C.40 D.509.“,”是“方程表示雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.某商場有四類食品,其中糧食類、植物油類、動物性食品類以及果蔬類分別有40種、10種、30種、20種,現(xiàn)從中抽取一個容量為20的樣本進行食品安全檢測.若采用分層抽樣的方法抽取樣本,則抽取的植物油類與果蔬類食品種數(shù)之和是()A.4 B.5C.6 D.711.正三棱柱各棱長均為為棱的中點,則點到平面的距離為()A. B.C. D.112.在三棱錐中,點E,F(xiàn)分別是的中點,點G在棱上,且滿足,若,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù)(1)求的最小正周期和的最大值;(2)已知銳角的內(nèi)角A,B,C對應(yīng)的邊分別為a,b,c,若,且,求的面積.14.如圖,在等腰直角中,,為半圓弧上異于,的動點,當半圓弧繞旋轉(zhuǎn)的過程中,有下列判斷:①存在點,使得;②存在點,使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請?zhí)钌纤心阏J為正確的結(jié)果的序號).15.若直線與曲線沒有公共點,則實數(shù)的取值范圍是____________16.某市有30000人參加階段性學業(yè)水平檢測,檢測結(jié)束后的數(shù)學成績X服從正態(tài)分布,若,則成績在140分以上的大約為______人三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在下列所給的三個條件中任選一個,補充在下面的問題中,并加以解答①過(-1,2);②與直線平行;③與直線垂直問題:已知直線過點M(3,5),且______(1)求的方程;(2)若與圓相交于點A、B,求弦AB的長18.(12分)某廠A車間為了確定合理的工時定額,需要確定加工零件所花費的時間,為此作了五次試驗,得到數(shù)據(jù)如下:加工零件的個數(shù)x12345加工的時間y(小時)1.52.43.23.94.5(1)在給定的坐標系中畫出散點圖;(2)求出y關(guān)于x的回歸方程;(3)試預(yù)測加工9個零件需要多少時間?參考公式:,19.(12分)某校從高一年級學生中隨機抽取40名中學生,將他們的期中考試數(shù)學成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:,,…,所得到如圖所示的頻率分布直圖(1)求圖中實數(shù)的值;(2)若該校高一年級共有640人,試估計該校高一年級期中考試數(shù)學成績不低于60分的人數(shù);(3)若從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,求這2名學生的數(shù)學成績之差的絕對值不大于10的概率.20.(12分)已知等比數(shù)列的前項和為,,.數(shù)列的前項和為,且,(1)分別求數(shù)列和的通項公式;(2)若,為數(shù)列的前項和,是否存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列?若存在,求出所有滿足條件的,,的值;若不存在,說明理由21.(12分)已知橢圓的左焦點為F,右頂點為,M是橢圓上一點.軸且(1)求橢圓C的標準方程;(2)直線與橢圓C交于E,H兩點,點G在橢圓C上,且四邊形平行四邊形(其中O為坐標原點),求22.(10分)如圖所示,在直四棱柱中,底面ABCD是菱形,點E,F(xiàn)分別在棱,上,且,(1)證明:點在平面BEF內(nèi);(2)若,,,求直線與平面BEF所成角的正弦值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】按照充分不必要條件依次判斷4個選項即可.【詳解】A選項:,錯誤;B選項:,錯誤;C選項:,,正確;D選項:,錯誤.故選:C.2、C【解析】根據(jù)題意,由為原點到直線上點的距離的平方,再根據(jù)點到直線垂線段最短,即可求得范圍.【詳解】由,,視為原點到直線上點的距離的平方,根據(jù)點到直線垂線段最短,可得,所有的取值范圍為,故選:C.3、A【解析】根據(jù)復(fù)合命題的真假表即可得出結(jié)果.【詳解】若“”為真命題,則為假命題,又“”為真命題,則至少有一個真命題,所以為真命題,即為假命題,為真命題.故選:A4、D【解析】先求得,然后根據(jù)空間向量模的坐標運算求得【詳解】由于向量,,所以.故故選:D5、A【解析】根據(jù)得出,根據(jù)充分必要條件的定義可判斷.【詳解】解:∵,向量,,∴,即,根據(jù)充分必要條件的定義可判斷:“”是“”的充分不必要條件,故選:A.6、C【解析】由圖可知切線斜率為,∴.故選:C.7、D【解析】根據(jù)命題及其關(guān)系、充分條件與必要條件、導(dǎo)數(shù)在函數(shù)中應(yīng)用、全稱量詞與存在量詞等相關(guān)知識一一判斷可得答案.【詳解】解:A,由原命題與逆否命題的構(gòu)成關(guān)系,可知A正確;B,當a=2>1時,函數(shù)在定義域內(nèi)是單調(diào)遞增函數(shù),當函數(shù)定義域內(nèi)是單調(diào)遞增函數(shù)時,a>1.所以B正確;C,由于存在性命題的否定是全稱命題,所以",使得"的否定是",均有,所以C正確;D,的根不一定是極值點,例如:函數(shù),則=0,即x=0就不是極值點,所以“若為的極值點,則”的逆命題為假命題,故選D.【點睛】本題主要考查命題及其關(guān)系、充分條件與必要條件、導(dǎo)數(shù)在函數(shù)中應(yīng)用、全稱量詞與存在量詞等相關(guān)知識,需牢記并靈活運用相關(guān)知識.8、B【解析】根據(jù)等比數(shù)列前項和的性質(zhì)進行求解即可.【詳解】因為是等比數(shù)列,所以成等比數(shù)列,即成等比數(shù)列,顯然,故選:B9、A【解析】根據(jù)雙曲線的方程以及充分條件和必要條件的定義進行判斷即可【詳解】由,可知方程表示焦點在軸上的雙曲線;反之,若表示雙曲線,則,即,或,所以“,”是“方程表示雙曲線”的充分不必要條件故選:A10、C【解析】按照分層抽樣的定義進行抽取.【詳解】按照分層抽樣的定義有,糧食類:植物油類:動物性食品類:果蔬類=4:1:3:2,抽20個出來,則糧食類8個,植物油類2個,動物性食品類6個,果蔬類4個,則抽取的植物油類與果蔬類食品種數(shù)之和是6個.故選:C.11、C【解析】建立空間直角坐標系,利用點面距公式求得正確答案.【詳解】設(shè)分別是的中點,根據(jù)正三棱柱的性質(zhì)可知兩兩垂直,以為原點建立如圖所示空間直角坐標系,,,.設(shè)平面的法向量為,則,故可設(shè),所以點到平面的距離為.故選:C12、B【解析】利用空間向量的加、減運算即可求解.【詳解】由題意可得故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、(1)的最小正周期為,的最大值為1(2)【解析】(1)直接根據(jù)的表達式和正弦函數(shù)的性質(zhì)可得到的最小正周期和最大值;(2)先根據(jù)求得角的大小為,然后在中利用余弦定理求得,最后根據(jù)三角形的面積公式即可【小問1詳解】已知則的最小正周期為:則的最大值為:【小問2詳解】由可得:()或()又為銳角,則可得:.在中,由余弦定理可得:,即又,解得:則的面積為:14、①②④【解析】①當D為中點,且A,B,C,D四點共面時,可證得四邊形ABCD為正方形即可判斷①;②當D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,作圖分析驗證可判斷④.【詳解】①當D為中點,且A,B,C,D四點共面時,連結(jié)BD,交AC于,則為AC中點,此時,且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當D在平面ABC內(nèi)的射影E在線段BC上(不含端點)時,此時有:平面ABC,,又因為,所以平面CDB,所以,故②正確;③,當平面平面ABC,且D為中點時,h有最大值;當A,B,C,D四點共面時h有最小值0,此時為平面圖形,不是立體圖形,故四面體D-ABC無最小值,故③錯誤.④二面角D-AC-B為直二面角,且D為中點時,直線DB與平面ABC所成角的最大,取AC中點O,連結(jié)DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設(shè),則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.15、;【解析】可化簡曲線的方程為,作出其圖形,數(shù)形結(jié)合求臨界值即可求解.【詳解】由可得,所以曲線為以為圓心,的下半圓,作出圖形如圖:當直線過點時,,可得,當直線與半圓相切時,則圓心到直線的距離,可得:或(舍),若直線與曲線沒有公共點,由圖知:或,所以實數(shù)的取值范圍是:,故答案為:16、150【解析】根據(jù)考試的成績X服從正態(tài)分布.得到考試的成績X的正太密度曲線關(guān)于對稱,根據(jù),得到,根據(jù)頻率乘以樣本容量得到這個分數(shù)段上的人數(shù)【詳解】由題意,考試的成績X服從正態(tài)分布考試的成績X的正太密度曲線關(guān)于對稱,,,,該市成績在140分以上的人數(shù)為故答案為:150三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)可依次根據(jù)直線方程的點斜式、“兩直線平行,斜率相等”、“兩直線垂直,斜率相乘為-1”求直線l的方程;(2)利用垂徑定理即可求圓的弦長.【小問1詳解】選條件①:∵直線過點(3,5)及(-1,2),∴直線的斜率為,依題意,直線的方程為,即;選條件②:∵直線的斜率為,直線與直線平行,∴直線的斜率為,依題意,直線的方程為;即;選條件③:∵直線的斜率為,直線與直線垂直,∴直線的斜率為,依題意,直線的方程為,即;【小問2詳解】圓心為(2,3),半徑為2,圓心到直線的距離為∴18、(1)圖見解析;(2);(3)小時.【解析】(1)根據(jù)表格數(shù)據(jù)在坐標系中描出對應(yīng)點即可.(2)由表格中的數(shù)據(jù)代入公式算出,再求,即可得到方程;(3)中將自變量為9代入回歸方程可得需用時間.【小問1詳解】【小問2詳解】由表中數(shù)據(jù)得:,,,,由x與y之間具有線性相關(guān)關(guān)系,根據(jù)公式知:,,∴回歸直線方程為:【小問3詳解】將代入回歸直線方程得,,∴預(yù)測加工9個零件需要小時19、(1)a=0.03;(2)544人;(3).【解析】(1)根據(jù)圖中所有小矩形的面積之和等于1求解.

(2)根據(jù)頻率分布直方圖,得到成績不低于60分的頻率,再根據(jù)該校高一年級共有學生640人求解.

(3)由頻率分布直方圖得到成績在[40,50)和[90,100]分數(shù)段內(nèi)的人數(shù),先列舉出從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生的基本事件總數(shù),再得到兩名學生的數(shù)學成績之差的絕對值不大于10”的基本事件數(shù),代入古典概型概率求解.【詳解】(1)∵圖中所有小矩形的面積之和等于1,∴10×(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.

(2)根據(jù)頻率分布直方圖,成績不低于60分的頻率為1?10×(0.005+0.01)=0.85,

∵該校高一年級共有學生640人,

∴由樣本估計總體的思想,可估計該校高一年級數(shù)學成績不低于60分的人數(shù)約為640×0.85=544人.

(3)成績在[40,50)分數(shù)段內(nèi)的人數(shù)為40×0.05=2人,分別記為A,B,

成績在[90,100]分數(shù)段內(nèi)的人數(shù)為40×0.1=4人,分別記為C,D,E,F(xiàn).

若從數(shù)學成績在[40,50)與[90,100]兩個分數(shù)段內(nèi)的學生中隨機選取兩名學生,

則所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F(xiàn)),(B,C),(B,D),(B,E),(B,F(xiàn)),(C,D),(C,E),

(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn))共15種.

如果兩名學生的數(shù)學成績都在[40,50)分數(shù)段內(nèi)或都在[90,100]分數(shù)段內(nèi),

那么這兩名學生的數(shù)學成績之差的絕對值一定不大于10.

如果一個成績在[40,50)分數(shù)段內(nèi),另一個成績在[90,100]分數(shù)段內(nèi),

那么這兩名學生數(shù)學成績之差的絕對值一定大于10.

記“這兩名學生的數(shù)學成績之差的絕對值不大于10”為事件M,

則事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F(xiàn)),(D,E),(D,F(xiàn)),(E,F(xiàn))共7種.

∴所求概率為P(M)=.【點睛】本題主要考查頻率分布直方圖的應(yīng)用以及古典概型概率的求法,還考查了運算求解的能力,屬于中檔題.20、(1),;(2)不存在,理由見解析.【解析】(1)利用數(shù)列為等比數(shù)列,將已知的等式利用首項和公比表示,得到一個方程組,求解即可得到首項和公比,結(jié)合等比數(shù)列的通項公式即可求出;將已知的等式變形,得到數(shù)列為等差數(shù)列,利用等差數(shù)列通項公式求出,再結(jié)合數(shù)列的第項與前項和之間的關(guān)系進行求解,即可得到;(2)先利用等比數(shù)列求和公式求出,從而得到的表達式,然后利用裂項相消求和法求出,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,利用等比中項、等差中項以及進行化簡變形,得到假設(shè)不成立,故可得到答案【詳解】(1)因為數(shù)列為等比數(shù)列,設(shè)首項為,公比為,由題意可知,所以,所以,由②可得,即,所以或2,因為,所以,所以,所以,由,可得,所以數(shù)列為等差數(shù)列,首項為,公差為1,故,則,當時,,當時,也適合上式,故(2)由,可得,所以,所以,假設(shè)存在不同的正整數(shù),,(其中,,成等差數(shù)列),使得,,成等比數(shù)列,則有,所以,則,即,因為,所以,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論