![Capgemini-生成人工智能:人工智能的下一章(英)_第1頁(yè)](http://file4.renrendoc.com/view/89cfef471e63c7d6ae7181087647b0b9/89cfef471e63c7d6ae7181087647b0b91.gif)
![Capgemini-生成人工智能:人工智能的下一章(英)_第2頁(yè)](http://file4.renrendoc.com/view/89cfef471e63c7d6ae7181087647b0b9/89cfef471e63c7d6ae7181087647b0b92.gif)
![Capgemini-生成人工智能:人工智能的下一章(英)_第3頁(yè)](http://file4.renrendoc.com/view/89cfef471e63c7d6ae7181087647b0b9/89cfef471e63c7d6ae7181087647b0b93.gif)
![Capgemini-生成人工智能:人工智能的下一章(英)_第4頁(yè)](http://file4.renrendoc.com/view/89cfef471e63c7d6ae7181087647b0b9/89cfef471e63c7d6ae7181087647b0b94.gif)
![Capgemini-生成人工智能:人工智能的下一章(英)_第5頁(yè)](http://file4.renrendoc.com/view/89cfef471e63c7d6ae7181087647b0b9/89cfef471e63c7d6ae7181087647b0b95.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
GENERATIVEAI
Thenextchapterof
Artificial
Intelligence
FOREWARD
Whileweobserveahugeadoptionof
GenerativeAIacrossorganizationsand
industries-nearlyall(96%)executivesciteGenerativeAIasahottopicofdiscussionintheirrespectiveboardrooms1–thetopicisnotnew.
TheriseofGenerativeAIispartofan
overallevolutionofAI-fromMLandDLexplosiontoLargeModelsmaturity-
leadingtoanAIbecomingnowmore
powerful,scalable,andaccessible.
TheNext-generationAIishere,driving
radicalbusinesstransformation.From
contentproduction,workflowtoproductinnovation,itisrevolutionizingthewaywecreate,interactandcollaborate,completelyshiftingatthesametimethewaywelookatAIasawhole.
Asweobserveanunprecedententhusiasmaroundit-74%ofexecutivesbelievethe
benefitsofGenerativeAIoutweighthe
associatedrisks2-Ethicsismorethen
evercriticalfororganizationsto
successfullyandresponsiblyimplement
GenerativeAIacrosstheirdatavalue
chain,andthereforeshouldabsolutely
notbeseenasthefifthwheelonthe
wagon.
Theexpectedbenefitsarehugeandas
abusinessleader,understandhow
GenerativeAIistransformingtheway
yourorganizationoperateisamust.
ThisEverestGroupreportexplores
wheredoesthetruevalueof
GenerativeAIlie,consideringthe
potentialpitfallsandsharingthekey
areastoprioritize.Indefinitive,asfor
anyData&AItopic,theway
organizationsshouldapproach
GenerativeAIstartsbybuildingthe
rightfoundationsincludingastrong
testing&trustlayer.Nodoubtthe
derivedoutcomeswilloutweightthe
risksiftailoredtoorganizations
specificitiesandbuiltwithsecure,
privacyprotectingandreliablehigh-
scaleGenerativesolutions.
Ifyouwouldliketocontinuethe
discussionandknowmoreabouthowcan
helpcustomizingGenerativeAIforyour
ownpurpose,pleasereachout
MARKOOST
CustomGenerativeforEnterprise
GlobalLeader,Capgemini
mark.oost@
1,2Source:
CapgeminiResearchInstitute,HarnessingthevalueofGenerativeAI:Topusecasesacrossindustries
EverestGrop
GenerativeAI:theNextChapter
ofArtificialIntelligence
ThisdocumenthasbeenlicensedtoCapgemini
VishalGupta,VicePresidentPriyaBhalla,PracticeDirector
Copyright?2023,EverestGlobal,Inc.Allrightsreserved.
Contents
Introduction03
AI:thejourneysofar04
GenAI–what’swiththehype?05
ThetruevalueofgenAI08
Potentialpitfalls–genAIisnot
10
abedofroses
Requisitestobuildasturdy
12
genAIstack
Conclusionandthewayforward14
|ThisdocumenthasbeenlicensedtoCapgemini
3
Introduction
Sinceitsconceptualizationin1956,AIhasbeenaremarkabletechnology,revolutionizingindustries,andredefining
human-machineinteraction.Thetechnologyhaspushedboundariesanduncoverednewfrontiersinthedigitalspace.Onesuch
remarkablebreakthroughthathascapturedtheimaginationof
researchers,innovators,businesses,andindividualsalikeisgenAI.Usingcomplexneuralnetworks,genAImodelsdevelopnew
contentinvariousformsandmodalities,suchastext,images,audios,videos,codes,andmore.
Inthisreport,weexaminetheadventofAI,tracingitsoriginsandfascinatinginnovations,upuntiltheemergenceofgenAI.Wethenexplorethetechnology’scapabilities,challenges,andthe
transformativeopportunitiesitpresents.AstheapplicationsofgenAIcontinuetoexpandacrossindustriesandwithitsabilityto
generatehuman-likecontentandmimichumancreativity,it
becomescrucialtoexploretheprofoundimpactitcanhaveonoursociety,economy,andeverydaylives.
Thereportrecognizesthatwhilethistechnologyholdsgreat
promise,italsopossessesinherentriskssuchasrisingconcerns
aboutdataprivacy,identitytheft,andmisinformation.Moreover,
accountabilityforitsconsequencesbecomesapressingconcernasAI-generatedcontentbecomesincreasinglyindistinguishablefromhuman-generatedcontent.Byaddressingtherisksandchallengeshead-onandadoptingindustrybestpractices,enterprisescan
unlockthetruepotentialofgenAIwhileethicallyandresponsiblyintegratingthisgroundbreakingtechnology.
|ThisdocumenthasbeenlicensedtoCapgemini
Spreadofdataandcompute
GENERATIVEAI:THENEXTCHAPTEROFARTIFICIALINTELLIGENCE
4
AI:thejourneysofar
JohnMcCarthyfirstusedthetermartificialintelligencein1956,butAImadeitsfirstappearancemuchearlierina1927filmtitledMetropolis,featuringahuman’srobotdouble.Thisinitialfictionalidea
sparkedaseriesofadvancesthathaveledtothemostadvanceddevelopmentinthehistoryofAItoday,genAI,whichcancreatefictionalcharactersandstoriesofitsown.Notably,atechnology
intendedtoenhancehumancapabilitiescannowpotentiallytakeoveramultitudeoftasksthathumansperformedtraditionally.ButAIdidnotreachthisstageinasprint;ithasbeenalongandchallenging
journeyinvolvingsignificantinvestments,numerousunsuccessfultrials,andbreakthroughadvances.Exhibit1providesanoverviewofthevariousstagesofAIdevelopment,innovation,andadoption
overtime.
EXHIBIT1
Milestonesinthejourney
Source:EverestGroup(2023)
Experiment
JohnMcCarthycoins
thetermAIatthe
DartmouthCollegeSummer
AIConference(1956)
Rapidenterprise
adoption;remarkablebreakthroughsin
deeplearningandgenAI
Advancesinprocessing
powerandcomputational
capabilities,enablingmore
complexAIalgorithms
Early2000
Enablement
Birthofcloudcomputing
withthelaunchofAWS,
GCP,andAzure
Enrichment
OpenAIlaunchesChatGPT(2022)
RiseofMLandexplorationoffoundationalAItechniques
2015andbeyond
1900s
Timeline
Thetermartificialintelligencebecamethebuzzwordofthetimeafteritsfirstappearance.However,thedevelopmentofAIdidnotreallybeginuntilthelate1960s,asthenecessarycomputingpoweranddatawerenotyetavailable,and,hence,mostoftheworkwasaroundthemathematicsofAI.Duringthe
1960sand1970s,AItechniquessuchasML,NLP,andcomputervisionwereestablished,whichlaidasolidfoundationforAItomakeinroadsintoourdailylives,pavingthewayforitswidespreadadoption.
|ThisdocumenthasbeenlicensedtoCapgemini
GENERATIVEAI:THENEXTCHAPTEROFARTIFICIALINTELLIGENCE
5
Theearly2000swasaperiodofsignificantprogressforAI.Athrivingecosystememergedthat
supportedAIinfrastructure.Advancesincomputingpower,storage,andnetworkingtechnologies
facilitatedtheprocessingofvastamountsofdatafortrainingAImodels.Thebirthofcloudcomputingin2006wasacatalystforincreasingAIdevelopment.Significantimprovementsinhardware,suchasthedevelopmentofpowerfulprocessors,GPUs,andspecializedchips,weremadeforAIworkloads.The
periodalsomarkedtheappearanceofathrivingecosystemofAIstart-ups.
AIdevelopmentandadoptionfast-trackedfrom2015.Notableimprovementsinalgorithmsandsoftware
tools,suchasthelaunchofopensourceAIsoftwareTensorFlowandPyTorch,madeiteasierfor
developerstobuildandscaleAIapplications.Thesedevelopments,coupledwithaccesstodynamiccomputingpowerthankstothecloud,enabledenterprisestoaccelerateAIadoption.
BothenterprisesandconsumersbecameincreasinglycomfortablewithAIinthepastdecade.Infact,
AIissodeeplyembeddedinourdailylivesthatitisalmostimpossibletoimagineaworldwithoutittoday.TheuseofAIhasalsosignificantlyscaledacrossenterprises.AccordingtoEverestGroup’s2023AIsurvey,96%ofenterpriseshavesuccessfullyimplementedAIinoneormoreoftheir
operations.
Forthelongesttime,AIcouldperformrepetitivetasks,suchasrecognizingpatternsoridentifyingobjects.ThatchangedwithOpenAI’slaunchofChatGPTonNovember30,2022.ChatGPTisanAI-poweredchatbottrainedonlargedatasetsofunlabeledtexttogeneratehuman-likeoutput.Weexamineitscapabilitiesnext.
GenAI–what’swiththehype?
Theworld’slargestandmostvaluableenterprisesareeithertalkingaboutgenAIorhavebeguntolaythefoundationsforitsimplementation.OpenAIresearcherIanGoodfellowiscreditedforcoiningthe
termgenerativeAIin2014.EverestGroupdefinesgenAIisafieldofAIthatcancreate,manipulate,andsynthesizenewcontentthatdidnotexistbeforeinvariousformsandmodalities.
ThankstoChatGPT,whichhasdemocratizedtheuseofAIandfundamentallychangedtheway
consumerssearchcontent,thecategoryistrendingmorethantheoverallgenAImarket.ThechatbothasputAI–whichwasearlierprivytotechnologycreators–intoconsumers’hands.
However,onemustbecarefulaboutthesynonymoususeofthetermsChatGPTandgenAI.WhilegenAIisafieldofAIwithgenerativecapabilities,ChatGPTisagenAIapplication.Beforeweprobethe
commercialandapplicationfacetsofgenAI,itisvitaltounderstandthedifferencesbetweenAIasweknowittoday(alsoknownasdecisionAI)andthedisrupternext-generationgenAI.
?
|ThisdocumenthasbeenlicensedtoCapgemini
6
GENERATIVEAI:THENEXTCHAPTEROFARTIFICIALINTELLIGENCE
Exhibit2showshowgenAImodelsdifferfromtraditionalMLmodelsandliststheirinput/outputfeatures:
EXHIBIT2
DecisionAIvs.genAI:acomparativeview
Source:EverestGroup(2023)
GenAI
Parameter
DecisionAI
Training
Canbetrainedonsmallerdatasetswith
Needlargedatasetswithan
parameters
fewerparameters
exponentiallyhighnumberoftrainingparameters
Trainingtime
andcost
Relativelycheaptotrainanddeploy
Relativelyquicktotrain
Hightraininganddeploymentcosts
Highcostofacquiringlargequalitydatasets
Significantlylongertrainingtime
Computeand
Canbetrainedandrunonstandard
Needspecializedhardwaresuchas
infrastructure
computinginfrastructure
GPUsandTPUs
Capability
Providepredictionsorclassificationsbasedonexistingdata
PerformspecificAIapplicationsonwhichtheyaretrained
Generativecapability–imageandvideosynthesis,textgeneration,speech
synthesis,codegeneration,etc.
General-purposemodelscapableofperformingmultipleAItasks
ThefundamentaldifferencebetweentraditionalMLmodelsandgenAImodelsisthenumberof
parameterstheyaretrainedon.Suchtraininghasbecomepossibleduetoincreasedavailabilityofqualitytrainingdataandhardwarecapacity,whichwerethetwobiggestconstraintsinthisfield.Forexample,trainingalargeimagemodelrequiresadatasetofmillionsofhigh-qualitylabeledimages,whiletraininganMLclassifiertorecognizespecificobjectsinimagesmayrequireadatasetof
thousandsoflabeledexamples.
Therisingnumberoftrainingparametersisanindicatorofincreasingmodelcomplexityandthe
model’sabilitytoperformmoregeneralizedtasks.However,foundationgenAImodels,whichare
trainedfornopurpose-definedtasksaretrainedonanextremelyhighnumberoftrainingparametersandrequirespecializedresources.Todate,onlylargetechgiantshavebeendevelopingfoundation
genAImodelsduetotheircomplexityandresourcerequirements.However,inthisraceofdevelopingbettergenAImodels,qualityisprovingtobemoreimportantthanquantity.CustomgenAImodels,
whicharedesignedforspecifictasksandaretrainedonsmallerbuttargeteddatasets,aregaininghightractioninthemarket.
|ThisdocumenthasbeenlicensedtoCapgemini
Numberoftrainingparameters(inmillion)
Logarithmicbase10
Jurassic-1
1,00,000廠YaLM
GENERATIVEAI:THENEXTCHAPTEROFARTIFICIALINTELLIGENCE
7
Exhibit3showstheprominentlargemodelslaunchedovertimeandtheirtrainingparametersizes.
EXHIBIT3
EvolutionofMLmodels
Source:TheAIIndex2023AnnualReportbyStanfordUniversity1andEverestGroupanalysis
.FoundationgenAImodels
AImodels
Customgen
1,00,00,000
.WuDao2.0
10,00,000PaLMGPT-4
Megatron-Turing..●Minerva
PanGu-?±GopherBLOOM-GPT-
3
GPT-3-1.rLaMDA
2
T5-11B
OPT●BloombergGPT
HyperClovaChinchillaGLMAlphaCodeLLaMA
TuringNLG
10,000StarCoder
.DALL-ECodexGPT-NeoXESMFoldFlan-UL2LParti
T5-3BMegatronGPT-J。CogE3.0。DALLsic-Alpaca.DALL-E2
1
Grover-Mega
.ERNIE
1,000LaMDA1Wu-NeoStableDiffuil.iffusion2.0
GPT-2
1002019onwardTimeline
Note:Therepresentationisnotexhaustiveandcoverslargemodelsthathaveapubliclydisclosednumberoftrainingparameters
Interestingly,ittookMeta2US$4.05milliontodevelopits65B-parameterLargeLanguageModel(LLM),LLaMA,whichwastrainedusing2048NVIDIA3A100GPUs.Thecostexemplifiesthesignificant
resourcesrequiredtodevelopgenAImodels,particularlyintermsofextensivecomputation.While
advancesintechnologyandtheavailabilityofsuperiordatasetsmayhelpbringdowndevelopment
costs,thecostofdevelopinggenerativemodelsisexpectedtoremainconsiderablyhigherthanthatfortraditionalMLmodels.ConsideringOpenAI’sGPTmodel,whichwastrainedon10,000suchGPUs,
onecanonlyimaginethescaleandassociatedcostsinvolved.Asthebenefitsandpotentialofthis
technologycontinuetounravel,theinvestmentitselfholdsgreatpromisefortransformingindustriesandunlockingnewpossibilitiesintheAIrealm.
1
TheAIIndex2023AnnualReportbyStanfordUniversity
2
MetaResearch
3
NVIDIAGPUpricing
|ThisdocumenthasbeenlicensedtoCapgemini
M&EProfessionalservices
RCG
BFSITravelandtransportPharmaceuticalsand lifesciences Education Manufacturing HealthcareTelecommunications
Publicsector
Energyandutilities
GENERATIVEAI:THENEXTCHAPTEROFARTIFICIALINTELLIGENCE
8
ThetruevalueofgenAI
ThesuccessandadoptionofgenAIdependsonseveralcrucialfactors.Whilewebelievethetechnologywillmakeitsimpactoneveryindustryinthefuture,someindustriesarepositionedtoadoptthistechnology
fasterthanothers.EverestGroupsoughttounderstandthereadinessoftheseindustriesforgenAIadoptionbyanalyzingfourparameters–currentdataavailability,technicalreadiness,regulatoryandcompliancerequirements,andcriticalityofcontentacrossindustries.
OuranalysisshowsthatMediaandEntertainment(M&E),professionalservices,RetailandConsumerGoods(RCG),Banking,FinancialServices,andInsurance(BFSI),andtravelandtransportarewell
positionedtoadoptthetechnologybeforeothers.Forexample,RCGcompanieshavebeendatabanksforconsumer-andproduct-centricdataforyearsandhavebeenattheforefrontoftechnologyadoptionwith
robustdataandinfrastructurefoundationstobuildupon.Additionally,whileeveryindustryhasacertainlevelofsensitivityforregulationsandcompliance,RCGhasfewerregulationsthanotherindustries.
SeveralenterprisesacrossotherverticalshavealsostartedexperimentingwithgenAI.Forexample,the
travelbookingcompanyeDreamsOdigeohaspartneredwithGoogletoimplementitsgenAIcapabilitiestopersonalizecustomerinteractions,whileSiemenshaspartneredwithMicrosofttousegenAIforautomaticinspectionnotescreationonthefactoryfloor.
Exhibit4providesinsightsintothereadinessforadoptinggenAIbyindustry.
EXHIBIT4
IndustryadoptionofgenAISource:EverestGroupanalysis
Availabilityofqualitydata
Technology
readiness
Regulationand
compliance
Needfor
content
generation*
Timetoadoption
LowHigh
Currentmarketmovements**
Within1year
Within1year
Within1year
Within1year
Within1year
1-2years
1-2years
1-2years
1-2years
>2years
>2years
>2years
*Webelievecontentasavectorwillbeakeydecision-makerforindustriestoadoptgenAIintheshortterm;however,inthelongerterm,theimpactofthisparameterwillneutralizeacrossallsectors
**Marketmovementsaretrackedbasedonenterprises’publicannouncementsofadoptionofgenAIusecasesacrossindustries.However,theseimplementationsareinPoCstagesanddonotindicateproductiondeploymentofthetechnologyatthispointintime
|ThisdocumenthasbeenlicensedtoCapgemini
Keyindustryusecases
Writingassistant
Articlesummary
Syntheticvoice
Text-to-music
Image/Videocreationandenhancement
Game
development
AIavatars
AI-generatedmediaposts
Generatingproduct
descriptions
Customer
interactionbots
Orderprocessing
Personalization
Sentimentanalysis
Product
personalization
Newproductdesigning
Sketch-to-design
Report
summarization
Unstructureddatasummarization
Financialbots
Insurancebots
Syntheticdataforrisksimulation
Contractassistant
Underwriting
Claimsprocessing
Travelitinerarydesigning
Travelbots
Horizontalusecases
Customer
servicebots
Callnotescreation/
Summarization
Automatic
responsesforcustomer
queries
Enterprisesearch
Employeeassistancebots
CRMbots
Automaticemails
Automatic
slidegenerator
Policydraftcreation
Contractcreation
AI-generatedjob
descriptions
L&Dcontentcreation
Campaignandadvertisementcreation
Content
personalization
Mediapostsand
promotionalcontent
Financial
statementspreparation
Contractassistant
GENERATIVEAI:THENEXTCHAPTEROFARTIFICIALINTELLIGENCE
9
Whilemostindustriesareintheexperimentationphase,innovativeusecasesareemergingeveryday.
Exhibit5highlightsprominentgenAIusecasesthataregeneratinginterestamongenterprises:
EXHIBIT5
KeyindustryusecasesleveraginggenAI
Source:EverestGroup(2023)ILLUSTRATIVE
Travelandtransport
IndustriesM&E
RCG
BFSI
Professional
services
Contractassistant
Report
summarization
Researchassistant
Customerexperience
Employeeexperience
Sales&
marketing
Human
resources
IT
Financeandaccounting
Code
generation
Text-to-SQL
Synthetic
datasetsfor
modeltraining
Testcasesgeneration
ITdocumentcreation
Website
development
|ThisdocumenthasbeenlicensedtoCapgemini
GENERATIVEAI:THENEXTCHAPTEROFARTIFICIALINTELLIGENCE
10
Potentialpitfalls–genAIisnotabedofroses
Untilnow,theapplicationofAIsystemswasnotreadilyapparenttoendusers.Whileitdidhavea
transformationalimpactonhowcompaniesoperate,mostofitwastransferredtoendcustomersintheformofbenefitsanduserexperience.ChatGPTisgenAI’siPhonemoment,whichturnedatechnologyintothezeitgeist.ItprovidesitsusersafascinatingexperienceofengagingwithAIsystemsfirst-hand,alongwiththeabilitytohavemeaningfulconversationslikeneverbefore.
However,thesebroadconversationalabilitiesdon’tmovethegenAIneedleforwardinwaysthatare
meaningfulforbroaderindustryadoption.TheunderlyingissueswiththetechnologyhinderitsadoptionamongenterpriseslookingoutforimpactfulgenAIusecases.
Datapreparedness-isyourdatagenAI-ready?
Theoutputofagenerativemodelisatruereflectionofthedatathatisfedintoitduringitstraining.Mostlargemodelsaretrainedonunfiltereddatafromtheinternet(socialmediafeeds,publications,e-journals,etc.)andare,therefore,subjecttoinherentbiasesanderrors.
It’samistaketoberelyingonChatGPTforanythingimportantrightnow.
–SamAltman,ChiefExecutiveOfficer,OpenAI
”
Thecurrentlargemodelsaretrainedtopresenttheiruserswithanoutputfortheirqueryorprompt–nomatterhowrightorwrong.However,incontrasttowhatafewmightclaim,thesemodelshavenot
achievedtheabilitytoreasonyet.Manyatimes,insituationswherealargemodelhaslimitedorno
actualinformation,itfillsupanygapsbasedoninformationthatismostlikelytobecorrect.Thisopacity
regardingthesourcedatacancatastrophicallyaffecttheoutputqualityandthedecisionstakenthereafter.
Safetyfirst-howdoyousafeguardyourenterprisedata?
Earlierthisyear,AmazonwarneditsemployeesabouttherisksofsharingconfidentialinformationthroughChatGPT.Soonafter,Samsung’semployeesaccidentallyleakedcompanysecretsvia
ChatGPTandmadeheadlinesforseveralpressreleasesinearlyApril.Consequently,thecompanybannedtheuseofgenAIinternally.JPMorganhasalsobannedtheuseofChatGPT.
Modelsthatarepre-trainedonexternaldatacanpresenttheriskofexposingsensitiveorconfidentialdatatothirdparties.WhileemployeesmayusegenAIasaproductivitytool,atthebackend,the
platformcontinuouslylearnsfromthedatathatissharedwithit.Thiscanhavedisastrous
consequencesforenterprises,whichstandatthevergeofleakingtheirprivatedatatotheoutsideworld,includingtheircompetitors.
|ThisdocumenthasbeenlicensedtoCapgemini
GENERATIVEAI:THENEXTCHAPTEROFARTIFICIALINTELLIGENCE
11
Actionsbasedonpre-trainedfoundationgenAImodelsalsolackclearresponsibilityandaccountabilityfortheoutputgenerated.AsenterprisesbegintointegrategenerativecapabilitiesofAIintotheircore
operations,theymustaddresstheelephantintheroom–whoisresponsibleforthequalityandlegalityoftheoutputgeneratedbythese“intelligent”systems?Ifthingsgowrong,isitthemodelownertobe
blamedortheuser?
Costconsiderations-isgenAIaffordable?
Despitetheirexceptionalperformance,thepre-trainedfoundationmodelstodayarenotenterprise
ready.Theydonotaccuratelycapturethelanguageusedwithinanenterprise'sspecificindustryor
domain,andthuscanleadtosuboptimalperformance.Notably,thecustomizationofthesemodelsonenterprisedataisthebiggestenterpriseconcerntoday.TotrulyuncoverthepowerofgenAI,
enterprisesneedtofine-tunethesemodelswithlocalenterpriseknowledgeusingtechniquessuchas
transferlearning.IntherealmofgenAI,opensourcemodelsareemergingasacost-lightalternativeto
proprietaryfoundationmodels.However,fine-tuninganyfoundationmodel,beitopensourceor
proprietary,isatime-consumingandresource-intensiveprocessthatrequiressignificantfinancial
investment.Hence,itisimportantforenterprisestocarefullyassesstheRoIbeforetheypushthegenAIboatout.
Theconundrumofsustainability-cangenAIloweryoursustainabilityscore?
Sustainabilityhasbeenoneveryone’smindslatelyand,consequently,manyenterpriseshavelaid
downambitioussustainabilitygoalstoachieveinthecomingyears.Meanwhile,theexcitementcreatedbygenAIisunimaginable.Thegenerativemodelsaregettingbigger,butsoaretheircarbonfootprints.Trainingthesemodelsrequiresamassiveamountofcomputingpower,whichboilsdowntoincreasedenergyconsumption,furtheraggravatingtheongoingclimatecrisis.Anothersustainabilityissuewith
thesemodelsistheirpotentialtoperpetuatebiasandinequity.Thesemodelslearnfromlargedatasets,and,ifthosedatasetsarebiased,themodelmayproducebiasedoutputs.GenAImodelsalsoposea
largersocietalriskoftakingovercertainjobs.
Atabroaderlevel,AIsystemscarryhugepotentialtoovercomesomeofthemostpressing
sustainabilityissues.So,thequestionis,howcanweusethesesystemstobuildabettersociety?Howcanenterprisesandproviderssolvethisparadoxofabitter-sweetrelationshipbetweenAIand
sustainability?WillthecurrentgreenAIsystemsbeenoughtomanagethescaleofthesegigantic
systems?Whilethetechnologyispromising,evaluatingtheRoIofgenAIimplementationsandcarefullyweighingthemagainstthecostofsustainabilitywillbecriticalforbusinesses.
TotrulyuncoverthepowerofgenAI,enterprisesneedtofine-tunethesemodels withlocalenterpriseknowledgeusingtechniquessuchastransferlearning.
|ThisdocumenthasbeenlicensedtoCapgemini
GENERATIVEAI:THENEXTCHAPTEROFARTIFICIALINTELLIGENCE
12
RequisitestobuildasturdygenAIstack
WhileweweighinonthechallengeshinderingscaledgenAIadoption,onethingisbecomingevidentlyclear:oncecontextualized,thetechnologyhastremendouspotentialforenterprises.Unlikeother
technologies,genAIisheretostayforalongtimebecausecurrentAIsystemshavealreadysettherightstagewitharobustfoundationalinfrastructureandcomplementarytechnologies.EverestGroupbelievesthatenterprisesshouldconsidersixfactorstomovebeyondexperimentationwithgenAItocommercialadvantage.
Theneedforcustomization-howdoyoumakegenAImodelstalkyour
organization'slanguage?
TotrulyunlockgenAI’spower,enterprisesneedtomakethesemodelscompatiblewiththeir
organizations’language,securityandprivacyrequirements,andexistingsystemsandinfrastructure.
Onethingthatisevidentlybecomingclearisthatnoonecanwinthisracealoneandthatknowledge
willbeakeydifferentiatorinthisecosystem.Notably,RedditandStackOverflowhavesetforthplanstostartchargingforaccesstotheirAPIsforthosecrawlingtheirwebsitestogathertrainingdata.
Partnershipshavealwaysbeencriticalforthedevelopmentofanybreakthroughtechnology,andthisneedisfurtherdrivenwithgenAIpushingenterprisestore-thinktheircollaborationstrategieswiththeextendedecosystem.
TheChineseAIgiantAlibabarecentlyannouncedanewpartnerprogramtofindpartnersthatcanhelpbuildcustomgenAImodels.Manyfoundationmodelprovidersareeitherlookingforpartnersorhave
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球農(nóng)業(yè)張力計(jì)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球便攜式激光測(cè)風(fēng)雷達(dá)行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球軍用聚脲防護(hù)涂料行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025-2030全球室溫固化環(huán)氧膠行業(yè)調(diào)研及趨勢(shì)分析報(bào)告
- 2025年全球及中國(guó)戰(zhàn)術(shù)靶標(biāo)系統(tǒng)行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 硅礦開采合同書
- 股票期權(quán)協(xié)議書合同協(xié)議
- 個(gè)人房屋買賣合同協(xié)議書模板
- 鐵礦設(shè)備買賣合同
- 2025隧道施工合同
- 中職安全管理方案
- 百詞斬托福詞匯excel版本
- 高考寫作指導(dǎo)常見議論文論證方法知識(shí)梳理與舉例解析課件27張
- (完整word版)高中英語(yǔ)3500詞匯表
- 玻璃反應(yīng)釜安全操作及保養(yǎng)規(guī)程
- 高中英語(yǔ)新課標(biāo)詞匯表(附詞組)
- 2023年心理咨詢師之心理咨詢師基礎(chǔ)知識(shí)考試題庫(kù)附完整答案【有一套】
- 證券公司信用風(fēng)險(xiǎn)和操作風(fēng)險(xiǎn)管理理論和實(shí)踐中金公司
- 一級(jí)建造師繼續(xù)教育最全題庫(kù)及答案(新)
- 2022年高考湖南卷生物試題(含答案解析)
- GB/T 20909-2007鋼門窗
評(píng)論
0/150
提交評(píng)論