版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版七年級下冊數(shù)學期末解答題壓軸題題一、解答題1.如圖,在網(wǎng)格中,每個小正方形的邊長均為1,正方形的頂點都在網(wǎng)格的格點上.(1)求正方形的面積和邊長;(2)建立適當?shù)钠矫嬷苯亲鴺讼担瑢懗稣叫嗡膫€頂點的坐標.2.已知足球場的形狀是一個長方形,而國際標準球場的長度和寬度(單位:米)的取值范圍分別是,.若某球場的寬與長的比是1:1.5,面積為7350平方米,請判斷該球場是否符合國際標準球場的長寬標準,并說明理由.3.學校要建一個面積是81平方米的草坪,草坪周圍用鐵柵欄圍繞,現(xiàn)有兩種方案:有人建議建成正方形,也有人建議建成圓形,如果從節(jié)省鐵柵欄費用的角度考慮(柵欄周長越小,費用越少),你選擇哪種方案?請說明理由.(π取3)4.有一塊面積為100cm2的正方形紙片.(1)該正方形紙片的邊長為cm(直接寫出結果);(2)小麗想沿著該紙片邊的方向裁剪出一塊面積為90cm2的長方形紙片,使它的長寬之比為4:3.小麗能用這塊紙片裁剪出符合要求的紙片嗎?5.如圖用兩個邊長為cm的小正方形紙片拼成一個大的正方形紙片,沿著大正方形紙片的邊的方向截出一個長方形紙片,能否使截得的長方形紙片長寬之比為,且面積為cm2?請說明理由.二、解答題6.如圖,直線HDGE,點A在直線HD上,點C在直線GE上,點B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大??;(3)如圖3,點P是線段AB上一點,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關系,并說明理由.7.如圖,已知直線,點在直線上,點在直線上,點在點的右側,平分平分,直線交于點.(1)若時,則___________;(2)試求出的度數(shù)(用含的代數(shù)式表示);(3)將線段向右平行移動,其他條件不變,請畫出相應圖形,并直接寫出的度數(shù).(用含的代數(shù)式表示)8.如圖,已知//,點是射線上一動點(與點不重合),分別平分和,分別交射線于點.(1)當時,的度數(shù)是_______;(2)當,求的度數(shù)(用的代數(shù)式表示);(3)當點運動時,與的度數(shù)之比是否隨點的運動而發(fā)生變化?若不變化,請求出這個比值;若變化,請寫出變化規(guī)律.(4)當點運動到使時,請直接寫出的度數(shù).9.綜合與實踐背景閱讀:在同一平面內,兩條不重合的直線的位置關系有相交、平行,若兩條不重合的直線只有一個公共點,我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關系的性質和判定是幾何的重要知識,是初中階段幾何合情推理的基礎.已知:AM∥CN,點B為平面內一點,AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系;(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.10.如圖,已知,是的平分線.(1)若平分,求的度數(shù);(2)若在的內部,且于,求證:平分;(3)在(2)的條件下,過點作,分別交、于點、,繞著點旋轉,但與、始終有交點,問:的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.三、解答題11.如圖1,點O在上,,射線交于點C,已知m,n滿足:.(1)試說明//的理由;(2)如圖2,平分,平分,直線、交于點E,則______;(3)若將繞點O逆時針旋轉,其余條件都不變,在旋轉過程中,的度數(shù)是否發(fā)生變化?請說明你的結論.12.問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).小明的思路是:如圖2,過P作PE∥AB,通過平行線性質來求∠APC.(1)按小明的思路,易求得∠APC的度數(shù)為度;(2)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數(shù)量關系?請說明理由;(3)在(2)的條件下,如果點P在A、B兩點外側運動時(點P與點A、B、O三點不重合),請你直接寫出∠CPD、∠α、∠β間的數(shù)量關系.13.課題學習:平行線的“等角轉化”功能.閱讀理解:如圖1,已知點A是BC外一點,連接AB,AC,求∠BAC+∠B+∠C的度數(shù).(1)閱讀并補充下面推理過程解:過點A作ED∥BC,∴∠B=∠EAB,∠C=又∵∠EAB+∠BAC+∠DAC=180°∴∠B+∠BAC+∠C=180°解題反思:從上面推理過程中,我們發(fā)現(xiàn)平行線具有“等角轉化”的功能,將∠BAC,∠B,∠C“湊”在一起,得出角之間的關系,使問題得以解決.方法運用:(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù).(提示:過點C作CF∥AB)深化拓展:(3)如圖3,已知AB∥CD,點C在點D的右側,∠ADC=70°,點B在點A的左側,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直線交于點E,點E在AB與CD兩條平行線之間,求∠BED的度數(shù).14.如圖,兩個形狀,大小完全相同的含有30°、60°的三角板如圖放置,PA、PB與直線MN重合,且三角板PAC,三角板PBD均可以繞點P逆時針旋轉.(1)①如圖1,∠DPC=度.②我們規(guī)定,如果兩個三角形只要有一組邊平行,我們就稱這兩個三角形為“孿生三角形”,如圖1,三角板BPD不動,三角板PAC從圖示位置開始每秒10°逆時針旋轉一周(0°旋轉360°),問旋轉時間t為多少時,這兩個三角形是“孿生三角形”.(2)如圖3,若三角板PAC的邊PA從PN處開始繞點P逆時針旋轉,轉速3°/秒,同時三角板PBD的邊PB從PM處開始繞點P逆時針旋轉,轉速2°/秒,在兩個三角板旋轉過程中,(PC轉到與PM重合時,兩三角板都停止轉動).設兩個三角板旋轉時間為t秒,以下兩個結論:①為定值;②∠BPN+∠CPD為定值,請選擇你認為對的結論加以證明.15.綜合與探究綜合與實踐課上,同學們以“一個含角的直角三角尺和兩條平行線”為背景開展數(shù)學活動,如圖,已知兩直線,,且,三角形是直角三角形,,,操作發(fā)現(xiàn):(1)如圖1.,求的度數(shù);(2)如圖2.創(chuàng)新小組的同學把直線向上平移,并把的位置改變,發(fā)現(xiàn),請說明理由.實踐探究:(3)填密小組在創(chuàng)新小組發(fā)現(xiàn)的結論的基礎上,將圖2中的圖形繼續(xù)變化得到圖3,平分,此時發(fā)現(xiàn)與又存在新的數(shù)量關系,請寫出與的數(shù)量關系并說明理由.四、解答題16.(1)如圖1,∠BAD的平分線AE與∠BCD的平分線CE交于點E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度數(shù);(2)如圖2,∠BAD的平分線AE與∠BCD的平分線CE交于點E,∠ADC=α°,∠ABC=β°,求∠AEC的度數(shù);(3)如圖3,PQ⊥MN于點O,點A是平面內一點,AB、AC交MN于B、C兩點,AD平分∠BAC交PQ于點D,請問的值是否發(fā)生變化?若不變,求出其值;若改變,請說明理由.17.如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點E,求∠CEN的度數(shù);(2)將圖①中的三角板OMN繞點O按逆時針方向旋轉,使∠BON=30°,如圖③,MN與CD相交于點E,求∠CEN的度數(shù);(3)將圖①中的三角板OMN繞點O按每秒30°的速度按逆時針方向旋轉一周,在旋轉的過程中,在第____________秒時,直線MN恰好與直線CD垂直.(直接寫出結果)18.如圖,直線m與直線n互相垂直,垂足為O、A、B兩點同時從點O出發(fā),點A沿直線m向左運動,點B沿直線n向上運動.(1)若∠BAO和∠ABO的平分線相交于點Q,在點A,B的運動過程中,∠AQB的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值,若發(fā)生變化,請說明理由.(2)若AP是∠BAO的鄰補角的平分線,BP是∠ABO的鄰補角的平分線,AP、BP相交于點P,AQ的延長線交PB的延長線于點C,在點A,B的運動過程中,∠P和∠C的大小是否會發(fā)生變化?若不發(fā)生變化,請求出∠P和∠C的度數(shù);若發(fā)生變化,請說明理由.19.己知:如圖①,直線直線,垂足為,點在射線上,點在射線上(、不與點重合),點在射線上且,過點作直線.點在點的左邊且(1)直接寫出的面積;(2)如圖②,若,作的平分線交于,交于,試說明;(3)如圖③,若,點在射線上運動,的平分線交的延長線于點,在點運動過程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.20.互動學習課堂上某小組同學對一個課題展開了探究.小亮:已知,如圖三角形,點是三角形內一點,連接,,試探究與,,之間的關系.小明:可以用三角形內角和定理去解決.小麗:用外角的相關結論也能解決.(1)請你在橫線上補全小明的探究過程:∵,(______)∴,(等式性質)∵,∴,∴.(______)(2)請你按照小麗的思路完成探究過程;(3)利用探究的結果,解決下列問題:①如圖①,在凹四邊形中,,,求______;②如圖②,在凹四邊形中,與的角平分線交于點,,,則______;③如圖③,,的十等分線相交于點、、、…、,若,,則的度數(shù)為______;④如圖④,,的角平分線交于點,則,與之間的數(shù)量關系是______;⑤如圖⑤,,的角平分線交于點,,,求的度數(shù).【參考答案】一、解答題1.(1)面積為29,邊長為;(2),,,,圖見解析.【分析】(1)面積等于一個大正方形的面積減去四個直角三角形的面積,再利用算術平方根定義求得邊長即可;(2)建立適當?shù)淖鴺讼岛髮懗鏊膫€頂點的坐標解析:(1)面積為29,邊長為;(2),,,,圖見解析.【分析】(1)面積等于一個大正方形的面積減去四個直角三角形的面積,再利用算術平方根定義求得邊長即可;(2)建立適當?shù)淖鴺讼岛髮懗鏊膫€頂點的坐標即可.【詳解】解:(1)正方形的面積,正方形邊長為;(2)建立如圖平面直角坐標系,則,,,.【點睛】本題考查了算術平方根及坐標與圖形的性質及割補法求面積,從圖形中整理出直角三角形是進一步解題的關鍵.2.符合,理由見解析【分析】根據(jù)寬與長的比是1:1.5,面積為7350平方米,列方程求出長和寬,比較得出答案.【詳解】解:符合,理由如下:設寬為b米,則長為1.5b米,由題意得,1.5b×b解析:符合,理由見解析【分析】根據(jù)寬與長的比是1:1.5,面積為7350平方米,列方程求出長和寬,比較得出答案.【詳解】解:符合,理由如下:設寬為b米,則長為1.5b米,由題意得,1.5b×b=7350,∴b=70,或b=-70(舍去),即寬為70米,長為1.5×70=105米,∵100≤105≤110,64≤70≤75,∴符合國際標準球場的長寬標準.【點睛】本題考查算術平方根的意義,列出方程求出長和寬是得出正確答案的前提.3.選擇建成圓形草坪的方案,理由詳見解析【分析】根據(jù)正方形的面積公式、算術平方根的概念求出正方形的邊長,求出正方形的周長,根據(jù)圓的面積公式、算術平方根的概念求出圓的半徑,求出圓的周長,比較大小得到答解析:選擇建成圓形草坪的方案,理由詳見解析【分析】根據(jù)正方形的面積公式、算術平方根的概念求出正方形的邊長,求出正方形的周長,根據(jù)圓的面積公式、算術平方根的概念求出圓的半徑,求出圓的周長,比較大小得到答案.【詳解】解:選擇建成圓形草坪的方案,理由如下:設建成正方形時的邊長為x米,由題意得:x2=81,解得:x=±9,∵x>0,∴x=9,∴正方形的周長為4×9=36,設建成圓形時圓的半徑為r米,由題意得:πr2=81.解得:,∵r>0.∴,∴圓的周長=,∵,∴,∴建成圓形草坪時所花的費用較少,故選擇建成圓形草坪的方案.【點睛】本題考查的是算術平方根的應用,掌握算術平方根概念是解題的關鍵.4.(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據(jù)算術平方根的定義直接得出;(2)直接利用算術平方根的定義長方形紙片的長與寬,進而得出答案.【詳解】解:(1)根據(jù)算解析:(1)10;(2)小麗不能用這塊紙片裁出符合要求的紙片.【分析】(1)根據(jù)算術平方根的定義直接得出;(2)直接利用算術平方根的定義長方形紙片的長與寬,進而得出答案.【詳解】解:(1)根據(jù)算術平方根定義可得,該正方形紙片的邊長為10cm;故答案為:10;(2)∵長方形紙片的長寬之比為4:3,∴設長方形紙片的長為4xcm,則寬為3xcm,則4x?3x=90,∴12x2=90,∴x2=,解得:x=或x=-(負值不符合題意,舍去),∴長方形紙片的長為2cm,∵5<<6,∴10<2,∴小麗不能用這塊紙片裁出符合要求的紙片.【點睛】本題考查了算術平方根.解題的關鍵是掌握算術平方根的定義:一個正數(shù)的正的平方根叫這個數(shù)的算術平方根;0的算術平方根為0.也考查了估算無理數(shù)的大?。?.不能截得長寬之比為,且面積為cm2的長方形紙片,見解析【分析】根據(jù)拼圖求出大正方形的邊長,再根據(jù)長方形的長、寬之比為3:2,計算長方形的長與寬進行驗證即可.【詳解】解:不能,因為大正方形紙解析:不能截得長寬之比為,且面積為cm2的長方形紙片,見解析【分析】根據(jù)拼圖求出大正方形的邊長,再根據(jù)長方形的長、寬之比為3:2,計算長方形的長與寬進行驗證即可.【詳解】解:不能,因為大正方形紙片的面積為()2+()2=36(cm2),所以大正方形的邊長為6cm,設截出的長方形的長為3bcm,寬為2bcm,則6b2=30,所以b=(取正值),所以3b=3=>,所以不能截得長寬之比為3:2,且面積為30cm2的長方形紙片.【點睛】本題考查了算術平方根,理解算術平方根的意義是正確解答的關鍵.二、解答題6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點B作BMHD,則HDGEBM,根據(jù)平行線的性質求得∠ABM與∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點B作BMHD,則HDGEBM,根據(jù)平行線的性質求得∠ABM與∠CBM,便可求得最后結果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結果;(3)過P作PKHDGE,先由平行線的性質證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內角和定理便可求得結果.【詳解】解:(1)過點B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點睛】本題考查了角平分線的定義,平行線性質和判定:兩直線平行,同位角相等;兩直線平行,同旁內角互補;兩直線平行,內錯角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結合思想與方程思想的應用,理清各角度之間的關系是解題的關鍵,也是本題的難點.7.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點E作EF∥AB,然后根據(jù)兩直線平行內錯角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)過點E作EF∥AB,然后根據(jù)兩直線平行內錯角相等,即可求∠BED的度數(shù);(2)同(1)中方法求解即可;(3)分當點B在點A左側和當點B在點A右側,再分三種情況,討論,分別過點E作EF∥AB,由角平分線的定義,平行線的性質,以及角的和差計算即可.【詳解】解:(1)當n=20時,∠ABC=40°,過E作EF∥AB,則EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)當點B在點A左側時,由(2)可知:∠BED=n°+40°;當點B在點A右側時,如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=∠ABC=n°,∠CDG=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如圖所示,過點E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=∠ABC=n°,∠CDE=∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;綜上所述,∠BED的度數(shù)為n°+40°或n°-40°或220°-n°.【點睛】此題考查了平行線的判定與性質,以及角平分線的定義,正確應用平行線的性質得出各角之間關系是解題關鍵.8.(1)120°;(2)90°-x°;(3)不變,;(4)45°【分析】(1)由平行線的性質:兩直線平行同旁內角互補可得;(2)由平行線的性質可得∠ABN=180°-x°,根據(jù)角平分線的定義知∠解析:(1)120°;(2)90°-x°;(3)不變,;(4)45°【分析】(1)由平行線的性質:兩直線平行同旁內角互補可得;(2)由平行線的性質可得∠ABN=180°-x°,根據(jù)角平分線的定義知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根據(jù)BD平分∠PBN知∠PBN=2∠DBN,從而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,當∠ACB=∠ABD時有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根據(jù)角平分線的定義可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行線的性質可得∠A+∠ABN=90°,即可得出答案.【詳解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;(3)不變,∠ADB:∠APB=.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=;(4)∵AM∥BN,∴∠ACB=∠CBN,當∠ACB=∠ABD時,則有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠A+∠ABN=90°,∴∠A+2∠DBN=90°,∴∠A+∠DBN=(∠A+2∠DBN)=45°.【點睛】本題主要考查平行線的性質和角平分線的定義,熟練掌握平行線的性質是解題的關鍵.9.(1);(2)見解析;(3)105°【分析】(1)通過平行線性質和直角三角形內角關系即可求解.(2)過點B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結論,結合角平分線性質解析:(1);(2)見解析;(3)105°【分析】(1)通過平行線性質和直角三角形內角關系即可求解.(2)過點B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結論,結合角平分線性質即可求解.【詳解】解:(1)如圖1,設AM與BC交于點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點睛】本題考查平行線性質,畫輔助線,找到角的和差倍分關系是求解本題的關鍵.10.(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)解析:(1)90°;(2)見解析;(3)不變,180°【分析】(1)根據(jù)鄰補角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補角的定義、角平分線的定義即可得解;(3),過,分別作,,根據(jù)平行線的性質及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內部,平分;(3)如圖,不發(fā)生變化,,過,分別作,,則有,,,,,,,,,,,,不變.【點睛】此題考查了平行線的性質,熟記平行線的性質及作出合理的輔助線是解題的關鍵.三、解答題11.(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也解析:(1)見解析;(2)45;(3)不變,見解析;【分析】(1)由可求得m及n,從而可求得∠MOC=∠OCQ,則可得結論;(2)易得∠AON的度數(shù),由兩條角平分線,可得∠DON,∠OCF的度數(shù),也易得∠COE的度數(shù),由三角形外角的性質即可求得∠OEF的度數(shù);(3)不變,分三種情況討論即可.【詳解】(1)∵,,且∴,∴m=20,n=70∴∠MOC=90゜-∠AOM=70゜∴∠MOC=∠OCQ=70゜∴MN∥PQ(2)∵∠AON=180゜-∠AOM=160゜又∵平分,平分∴,∵∴∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜故答案為:45.(3)不變,理由如下:如圖,當0゜<α<20゜時,∵CF平分∠OCQ∴∠OCF=∠QCF設∠OCF=∠QCF=x則∠OCQ=2x∵MN∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜當α=20゜時,OD與OB共線,則∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜當20゜<α<90゜時,如圖∵CF平分∠OCQ∴∠OCF=∠QCF設∠OCF=∠QCF=x則∠OCQ=2x∵MN∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜綜上所述,∠EOF的度數(shù)不變.【點睛】本題主要考查了角平分線的定義,平行線的判定與性質,角的和差關系,注意分類討論,引入適當?shù)牧勘阌谶\算簡便.12.(1)110°;(2)∠CPD=∠α+∠β,見解析;(3)當P在BA延長線時,∠CPD=∠β-∠α;當P在AB延長線上時,∠CPD=∠α-∠β【分析】(1)過P作PE∥AB,通過平行線性質求∠A解析:(1)110°;(2)∠CPD=∠α+∠β,見解析;(3)當P在BA延長線時,∠CPD=∠β-∠α;當P在AB延長線上時,∠CPD=∠α-∠β【分析】(1)過P作PE∥AB,通過平行線性質求∠APC即可;(2)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)畫出圖形,根據(jù)平行線的性質得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【詳解】解:(1)過點P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.故答案為110°;(2)∠CPD=∠α+∠β,理由是:如圖3,過P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)當P在BA延長線時,∠CPD=∠β-∠α,理由是:如圖4,過P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;當P在AB延長線時,∠CPD=∠α-∠β,理由是:如圖5,過P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【點睛】本題考查了平行線的性質和判定的應用,主要考查學生的推理能力,題目是一道比較典型的題目,分類討論是解題的關鍵.13.(1)∠DAC;(2)360°;(3)65°【分析】(1)根據(jù)平行線的性質即可得到結論;(2)過C作CF∥AB根據(jù)平行線的性質得到∠D=∠FCD,∠B=∠BCF,然后根據(jù)已知條件即可得到結論;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根據(jù)平行線的性質即可得到結論;(2)過C作CF∥AB根據(jù)平行線的性質得到∠D=∠FCD,∠B=∠BCF,然后根據(jù)已知條件即可得到結論;(3)過點E作EF∥AB,然后根據(jù)兩直線平行內錯角相等,即可求∠BED的度數(shù).【詳解】解:(1)過點A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案為:∠DAC;(2)過C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如圖3,過點E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【點睛】此題考查了平行線的判定與性質,解題的關鍵是正確添加輔助線,利用平行線的性質進行推算.14.(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結合已知條件可得:從而可得答案;②當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和解析:(1)①90;②t為或或或或或或;(2)①正確,②錯誤,證明見解析.【分析】(1)①由平角的定義,結合已知條件可得:從而可得答案;②當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差求解旋轉角,可得旋轉時間;當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時,有兩種情況,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時,畫出符合題意的圖形,利用平行線的性質與角的和差關系求解旋轉角,可得旋轉時間;當時的旋轉時間與相同;(2)分兩種情況討論:當在上方時,當在下方時,①分別用含的代數(shù)式表示,從而可得的值;②分別用含的代數(shù)式表示,得到是一個含的代數(shù)式,從而可得答案.【詳解】解:(1)①∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180﹣30﹣60=90°,故答案為90;②如圖1﹣1,當BD∥PC時,∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵轉速為10°/秒,∴旋轉時間為3秒;如圖1﹣2,當PC∥BD時,∵∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC繞點P逆時針旋轉的角度為180°+30°=210°,∵轉速為10°/秒,∴旋轉時間為21秒,如圖1﹣3,當PA∥BD時,即點D與點C重合,此時∠ACP=∠BPD=30°,則AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC繞點P逆時針旋轉的角度為90°,∵轉速為10°/秒,∴旋轉時間為9秒,如圖1﹣4,當PA∥BD時,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC繞點P逆時針旋轉的角度為90°+180°=270°,∵轉速為10°/秒,∴旋轉時間為27秒,如圖1﹣5,當AC∥DP時,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC繞點P逆時針旋轉的角度為60°,∵轉速為10°/秒,∴旋轉時間為6秒,如圖1﹣6,當時,∴三角板PAC繞點P逆時針旋轉的角度為∵轉速為10°/秒,∴旋轉時間為秒,如圖1﹣7,當AC∥BD時,∵AC∥BD,∴∠DBP=∠BAC=90°,∴點A在MN上,∴三角板PAC繞點P逆時針旋轉的角度為180°,∵轉速為10°/秒,∴旋轉時間為18秒,當時,如圖1-3,1-4,旋轉時間分別為:,綜上所述:當t為或或或或或或時,這兩個三角形是“孿生三角形”;(2)如圖,當在上方時,①正確,理由如下:設運動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結論錯誤.當在下方時,如圖,①正確,理由如下:設運動時間為t秒,則∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=∠APN=3t.∴∠CPD=∴②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD隨著時間在變化,不為定值,結論錯誤.綜上:①正確,②錯誤.【點睛】本題考查的是角的和差倍分關系,平行線的性質與判定,角的動態(tài)定義(旋轉角)的理解,掌握分類討論的思想是解題的關鍵.15.(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質即可得出答案;(2)過點B作BD∥a.由平行線的性質得∠2+∠ABD=180°,∠1=∠解析:(1);(2)理由見解析;(3),理由見解析.【分析】(1)由平角定義求出∠3=42°,再由平行線的性質即可得出答案;(2)過點B作BD∥a.由平行線的性質得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC?∠DBC=60°?∠1,進而得出結論;(3)過點C作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結論.【詳解】解:(1)如圖1,,,,;圖1(2)理由如下:如圖2.過點作,圖2,,,,,,;(3),圖3理由如下:如圖3,過點作,平分,,,又,,,,,又,,.【點睛】本題是三角形綜合題目,考查了平移的性質、直角三角形的性質、平行線的判定與性質、角平分線定義、平角的定義等知識;本題綜合性強,熟練掌握平移的性質和平行線的性質是解題的關鍵.四、解答題16.(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質,可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不變化,【分析】(1)由三角形內角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分線的性質,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,則可得∠E=(∠D+∠B),繼而求得答案;(2)首先延長BC交AD于點F,由三角形外角的性質,可得∠BCD=∠B+∠BAD+∠D,又由角平分線的性質,即可求得答案.(3)由三角形內角和定理,可得,利用角平分線的性質與三角形的外角的性質可得答案.【詳解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延長BC交AD于點F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不發(fā)生變化,理由如下:如圖,記與交于,與交于,①,②,①-②得:AD平分∠BAC,【點睛】此題考查了三角形內角和定理、三角形外角的性質以及角平分線的定義.此題難度較大,注意掌握整體思想與數(shù)形結合思想的應用.17.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內角互補即可求出∠CEN的度數(shù).(3)畫出圖形,求出在MN⊥CD時的旋轉角,再除以30°即得結果.【詳解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如圖,MN⊥CD時,旋轉角為360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒時,直線MN恰好與直線CD垂直.【點睛】本題以學生熟悉的三角板為載體,考查了三角形的內角和、平行線的判定和性質、垂直的定義和旋轉的性質,前兩小題難度不大,難點是第(3)小題,解題的關鍵是畫出適合題意的幾何圖形,弄清求旋轉角的思路和方法,本題的第一種情況是將旋轉角∠DOM放在四邊形DOMF中,用四邊形內角和求解,第二種情況是用周角減去∠DOM的度數(shù).18.(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BA解析:(1)∠AQB的大小不發(fā)生變化,∠AQB=135°;(2)∠P和∠C的大小不變,∠P=45°,∠C=45°.【分析】第(1)題因垂直可求出∠ABO與∠BAO的和,由角平分線和角的和差可求出∠BAQ與∠ABQ的和,最后在△ABQ中,根據(jù)三角形的內角各定理可求∠AQB的大?。?2)題求∠P的大小,用鄰補角、角平分線、平角、直角和三角形內角和定理等知識求解.【詳解】解:(1)∠AQB的大小不發(fā)生變化,如圖1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分別是∠BAO和∠ABO的角平分線,∴∠BAQ=∠BAC,∠ABQ=∠ABO,∴∠BAQ+∠ABQ=(∠ABO+∠BAO)=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如圖2所示:①∠P的大小不發(fā)生變化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分別是∠BAE和∠ABP的角平分線,∴∠PAB=∠EAB,∠P
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年購物中心廣告位出租合同3篇
- 2024年私人無息借款合同:個人互借合同版B版
- 智能數(shù)據(jù)標簽服務合同
- 二零二五年度教育用品全球市場經(jīng)銷合同3篇
- 2024年金融服務合同標的明細
- 電信網(wǎng)絡建設合同
- 電影院線票務合同
- 2024年礦物資源勘探開發(fā)鉆探合同
- 蘇氨酸代謝與腫瘤發(fā)生關系-洞察分析
- 虛擬現(xiàn)實在零售中的應用-洞察分析
- 送貨員崗位勞動合同模板
- 2024年自然資源部所屬事業(yè)單位招聘(208人)歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 上海南洋模范2025屆高二生物第一學期期末檢測模擬試題含解析
- 《建筑施工安全檢查標準》JGJ59-2019
- 廣東茂名市選聘市屬國有企業(yè)招聘筆試題庫2024
- 2025屆高考數(shù)學一輪復習建議-函數(shù)與導數(shù)專題講座課件
- 2024-2030年中國高性能混凝土行業(yè)銷售規(guī)模與投資盈利預測報告
- 江蘇省常州市教育學會2023-2024學年高一上學期期末考試化學試題 (解析版)
- 中醫(yī)兒科護理課件
- 部編人教版二年級道德與法治上冊全冊教學設計(含反思)
- 2024年數(shù)學三年級上冊乘法分配律基礎練習題(含答案)
評論
0/150
提交評論