版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題20極值點(diǎn)偏移問(wèn)題1.極值點(diǎn)偏移的含義若單峰函數(shù)f(x)的極值點(diǎn)為x0,則極值點(diǎn)的偏移問(wèn)題的圖示及函數(shù)值的大小關(guān)系如下表所示.極值點(diǎn)x0函數(shù)值的大小關(guān)系圖示極值點(diǎn)不偏移x0=eq\f(x1+x2,2)f(x1)=f(2x0-x2)極值點(diǎn)偏移左移x0<eq\f(x1+x2,2)峰口向上:f(x1)<f(2x0-x2)峰口向下:f(x1)>f(2x0-x2)右移x0>eq\f(x1+x2,2)峰口向上:f(x1)>f(2x0-x2)峰口向下:f(x1)<f(2x0-x2)2.函數(shù)極值點(diǎn)偏移問(wèn)題的題型及解法極值點(diǎn)偏移問(wèn)題的題設(shè)一般有以下四種形式:若函數(shù)f(x)在定義域上存在兩個(gè)零點(diǎn)x1,x2(x1≠x2),求證:x1+x2>2x0(x0為函數(shù)f(x)的極值點(diǎn));若在函數(shù)f(x)的定義域上存在x1,x2(x1≠x2)滿足f(x1)=f(x2),求證:x1+x2>2x0(x0為函數(shù)f(x)的極值點(diǎn));(3)若函數(shù)f(x)存在兩個(gè)零點(diǎn)x1,x2(x1≠x2),令x0=eq\f(x1+x2,2),求證:f′(x0)>0;(4)若在函數(shù)f(x)的定義域上存在x1,x2(x1≠x2)滿足f(x1)=f(x2),令x0=eq\f(x1+x2,2),求證:f′(x0)>0.3.極值點(diǎn)偏移問(wèn)題的一般解法3.1對(duì)稱化構(gòu)造法主要用來(lái)解決與兩個(gè)極值點(diǎn)之和,積相關(guān)的不等式的證明問(wèn)題.其解題要點(diǎn)如下:(1)定函數(shù)(極值點(diǎn)為SKIPIF1<0),即利用導(dǎo)函數(shù)符號(hào)的變化判斷函數(shù)的單調(diào)性,進(jìn)而確定函數(shù)的極值點(diǎn)SKIPIF1<0.(2)構(gòu)造函數(shù),即對(duì)結(jié)論SKIPIF1<0型,構(gòu)造函數(shù)SKIPIF1<0或SKIPIF1<0;(3)對(duì)結(jié)論SKIPIF1<0型,構(gòu)造函數(shù)SKIPIF1<0,通過(guò)研究SKIPIF1<0的單調(diào)性獲得不等式.(4)判斷單調(diào)性,即利用導(dǎo)數(shù)討論SKIPIF1<0的單調(diào)性.(5)比較大小,即判斷函數(shù)SKIPIF1<0在某段區(qū)間上的正負(fù),并得出SKIPIF1<0與SKIPIF1<0的大小關(guān)系.(6)轉(zhuǎn)化,即利用函數(shù)f(x)的單調(diào)性,將SKIPIF1<0與SKIPIF1<0的大小關(guān)系轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0之間的關(guān)系,進(jìn)而得到所證或所求.3.2.差值代換法(韋達(dá)定理代換令SKIPIF1<0.)差值換元的目的也是消參、減元,就是根據(jù)已知條件首先建立極值點(diǎn)之間的關(guān)系,然后利用兩個(gè)極值點(diǎn)之差作為變量,從而實(shí)現(xiàn)消參、減元的目的.設(shè)法用差值(一般用SKIPIF1<0表示)表示兩個(gè)極值點(diǎn),即SKIPIF1<0,化為單變量的函數(shù)不等式,繼而將所求解問(wèn)題轉(zhuǎn)化為關(guān)于SKIPIF1<0的函數(shù)問(wèn)題求解.3.3.比值代換法比值換元的目的也是消參、減元,就是根據(jù)已知條件首先建立極值點(diǎn)之間的關(guān)系,然后利用兩個(gè)極值點(diǎn)的比值作為變量,從而實(shí)現(xiàn)消參、減元的目的.設(shè)法用比值(一般用SKIPIF1<0表示)表示兩個(gè)極值點(diǎn),即SKIPIF1<0,化為單變量的函數(shù)不等式,繼而將所求解問(wèn)題轉(zhuǎn)化為關(guān)于SKIPIF1<0的函數(shù)問(wèn)題求解.3.4.對(duì)數(shù)均值不等式法兩個(gè)正數(shù)SKIPIF1<0和SKIPIF1<0的對(duì)數(shù)平均定義:SKIPIF1<0對(duì)數(shù)平均與算術(shù)平均、幾何平均的大小關(guān)系:SKIPIF1<0(此式記為對(duì)數(shù)平均不等式)取等條件:當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立.3.5指數(shù)不等式法在對(duì)數(shù)均值不等式中,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,根據(jù)對(duì)數(shù)均值不等式有如下關(guān)系:SKIPIF1<0專項(xiàng)突破練1.已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0.【解析】(1)∵SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,得x=1,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0,增區(qū)間為SKIPIF1<0;(2)由(1)知,不妨設(shè)SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,即SKIPIF1<0,得證.2.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0是增函數(shù),求實(shí)數(shù)a的取值范圍;(2)若SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)函數(shù)的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,若SKIPIF1<0是增函數(shù),即SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,故SKIPIF1<0恒成立,設(shè)SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以a的取值范圍是SKIPIF1<0.(2)不妨設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0是SKIPIF1<0的兩個(gè)極值點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,同理SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0是函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn),即SKIPIF1<0,由(1)知,SKIPIF1<0,故應(yīng)有SKIPIF1<0,且SKIPIF1<0,要證明SKIPIF1<0,只需證SKIPIF1<0,只需證SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,及SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0成立,即SKIPIF1<0成立.3.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的極大值;(2)設(shè)SKIPIF1<0、SKIPIF1<0是兩個(gè)不相等的正數(shù),且SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,所以,函數(shù)SKIPIF1<0的極大值為SKIPIF1<0.(2)證明:因?yàn)镾KIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,由(1)知,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,因?yàn)镾KIPIF1<0、SKIPIF1<0是兩個(gè)不相等的正數(shù),且滿足SKIPIF1<0,不妨設(shè)SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,又因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上連續(xù),故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),故SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),故SKIPIF1<0,則SKIPIF1<0.4.已知函數(shù)SKIPIF1<0(1)討論f(x)的單調(diào)性;(2)若SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)SKIPIF1<0
當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增;SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0所以SKIPIF1<0單調(diào)遞減;SKIPIF1<0,SKIPIF1<0SKIPIF1<0所以SKIPIF1<0單調(diào)遞增;(2)證明:SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0由(1)可知,此時(shí)SKIPIF1<0是SKIPIF1<0的極大值點(diǎn),因此不妨令SKIPIF1<0要證SKIPIF1<0,即證:SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立;②當(dāng)SKIPIF1<0時(shí)先證SKIPIF1<0此時(shí)SKIPIF1<0
要證SKIPIF1<0,即證:SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0即:SKIPIF1<0①令SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增∴SKIPIF1<0,∴①式得證.∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0
∴SKIPIF1<0
∴SKIPIF1<05.已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0).(1)SKIPIF1<0,求函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程.(2)討論函數(shù)SKIPIF1<0的單調(diào)性;(3)若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0,所以SKIPIF1<0.所以函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(2)SKIPIF1<0的定義域?yàn)?0,+∞),SKIPIF1<0.當(dāng)a<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0在(0,+∞)上單調(diào)遞減;當(dāng)a>0時(shí),SKIPIF1<0.在SKIPIF1<0上,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞減;在SKIPIF1<0上,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增.(3)當(dāng)SKIPIF1<0,SKIPIF1<0.由(2)知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.由題意可得:SKIPIF1<0.由SKIPIF1<0及SKIPIF1<0得:SKIPIF1<0.欲證x1+x2>2e,只要x1>2e-x2,注意到f(x)在(0,e)上單調(diào)遞減,且f(x1)=0,只要證明f(2e-x2)>0即可.由SKIPIF1<0得SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0令SKIPIF1<0則SKIPIF1<0,則g(t)在(e,2e)上是遞增的,∴g(t)>g(e)=0即f(2e-x2)>0.綜上x(chóng)1+x2>2e.6.已知函數(shù)SKIPIF1<0(1)求證:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(2)當(dāng)方程SKIPIF1<0有兩個(gè)不等實(shí)數(shù)根SKIPIF1<0時(shí),求證:SKIPIF1<0【解析】(1)令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(2)證明:由SKIPIF1<0,得SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0.
因?yàn)榉匠蘏KIPIF1<0有兩個(gè)不等實(shí)根,所以SKIPIF1<0.不妨設(shè)SKIPIF1<0.由(1)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.方程SKIPIF1<0可化為SKIPIF1<0.所以SKIPIF1<0,整理得SKIPIF1<0.①同理由SKIPIF1<0,整理得SKIPIF1<0.②由①②,得SKIPIF1<0.又因?yàn)镾KIPIF1<0所以SKIPIF1<0.法二:由SKIPIF1<0,得SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0.因?yàn)榉匠蘏KIPIF1<0有兩個(gè)不等實(shí)根,所以SKIPIF1<0.不妨設(shè)SKIPIF1<0.要證SKIPIF1<0,只要證SKIPIF1<0,只要證:SKIPIF1<0.因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,只要證:SKIPIF1<0.令SKIPIF1<0,只要證SKIPIF1<0,SKIPIF1<0恒成立.因?yàn)镾KIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,故原結(jié)論得證.7.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,證明:SKIPIF1<0;(2)若SKIPIF1<0有兩個(gè)不同的零點(diǎn)SKIPIF1<0,求a的取值范圍,并證明:SKIPIF1<0.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,定義域?yàn)镾KIPIF1<0令SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0;(2)因?yàn)镾KIPIF1<0有兩個(gè)不同的零點(diǎn)SKIPIF1<0,則SKIPIF1<0在定義域內(nèi)不單調(diào);由SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0恒成立,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,不符合題意;當(dāng)SKIPIF1<0時(shí),在SKIPIF1<0上有SKIPIF1<0,在SKIPIF1<0上有SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.不妨設(shè)SKIPIF1<0令SKIPIF1<0則SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增所以SKIPIF1<0故SKIPIF1<0,因?yàn)镾KIPIF1<0所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,則SKIPIF1<0.8.已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若SKIPIF1<0(SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù)),方程SKIPIF1<0有兩個(gè)不等實(shí)根SKIPIF1<0、SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,所以,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(2)證明:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0為增函數(shù),所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.由方程SKIPIF1<0有兩個(gè)不等實(shí)根SKIPIF1<0、SKIPIF1<0,則可設(shè)SKIPIF1<0,欲證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0得證.9.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,證明:SKIPIF1<0時(shí),SKIPIF1<0;(2)若函數(shù)SKIPIF1<0恰有三個(gè)零點(diǎn)SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.(2)SKIPIF1<0,顯然SKIPIF1<0為函數(shù)的一個(gè)零點(diǎn),設(shè)為SKIPIF1<0;設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.由已知,SKIPIF1<0必有兩個(gè)零點(diǎn)SKIPIF1<0,且SKIPIF1<0,下證:SKIPIF1<0.設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0,則SKIPIF1<0,由(1)有SKIPIF1<0,故SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即有SKIPIF1<0,由于SKIPIF1<0,且在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0.10.已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0為增函數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)若函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0、SKIPIF1<0.求證:SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0,該函數(shù)的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0為增函數(shù),則SKIPIF1<0恒成立.令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,所以,SKIPIF1<0,因此SKIPIF1<0.(2)因?yàn)楹瘮?shù)SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0、SKIPIF1<0,即方程SKIPIF1<0有兩個(gè)不等的實(shí)根SKIPIF1<0、SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以,SKIPIF1<0,即SKIPIF1<0、SKIPIF1<0是SKIPIF1<0的兩個(gè)根,所以SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0.由SKIPIF1<0兩式作差得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即只需證SKIPIF1<0,即證SKIPIF1<0.令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,命題得證.11.已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若函數(shù)SKIPIF1<0的圖象與SKIPIF1<0的圖象交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),證明:SKIPIF1<0.【解析】(1)SKIPIF1<0的定義域?yàn)镾KIPIF1<0令SKIPIF1<0,解得SKIPIF1<0令SKIPIF1<0,解得SKIPIF1<0所以SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,減區(qū)間為SKIPIF1<0(2)由(1)不妨設(shè)SKIPIF1<0由題知SKIPIF1<0,SKIPIF1<0兩式相減整理可得:SKIPIF1<0所以要證明SKIPIF1<0成立,只需證明SKIPIF1<0因?yàn)镾KIPIF1<0,所以只需證明SKIPIF1<0令SKIPIF1<0,則只需證明SKIPIF1<0,即證SKIPIF1<0令SKIPIF1<0SKIPIF1<0記SKIPIF1<0則SKIPIF1<0易知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增故SKIPIF1<0,即SKIPIF1<0所以,原不等式SKIPIF1<0成立.12.已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性.(2)若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.②當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.綜上所述,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)證明:因?yàn)镾KIPIF1<0為SKIPIF1<0的兩個(gè)零點(diǎn),所以SKIPIF1<0,SKIPIF1<0,兩式相減,可得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,因此,SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0得證.13.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0時(shí),SKIPIF1<0,求SKIPIF1<0的取值范圍;(2)當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,與已知矛盾.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,滿足條件;綜上,SKIPIF1<0取值范圍是SKIPIF1<0.(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,要證SKIPIF1<0,只需證SKIPIF1<0,∵SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,∴只需證SKIPIF1<0,∵SKIPIF1<0,∴只需證SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0成立,∴SKIPIF1<0.14.設(shè)函數(shù)SKIPIF1<0,已知直線SKIPIF1<0是曲線SKIPIF1<0的一條切線.(1)求SKIPIF1<0的值,并討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,其中SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增【解析】(1)設(shè)直線SKIPIF1<0與曲線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;又SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0有唯一零點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)由(1)知:SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0;要證SKIPIF1<0,只需證SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0只需證SKIPIF1<0,又SKIPIF1<0,則只需證SKIPIF1<0對(duì)任意SKIPIF1<0恒成立;設(shè)SKIPIF1<0,SKIPIF1<0;設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0時(shí)恒成立,又SKIPIF1<0,SKIPIF1<0,原不等式得證.15.已知函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn)SKIPIF1<0.(1)求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)求證:SKIPIF1<0.【解析】(1)定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0處取得極小值,也是最小值,又SKIPIF1<0,所以先保證必要條件SKIPIF1<0成立,即SKIPIF1<0滿足題意.當(dāng)SKIPIF1<0時(shí),易知,SKIPIF1<0;SKIPIF1<0由以上可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有兩個(gè)不同的零點(diǎn).(2)由題意,假設(shè)SKIPIF1<0,要證明SKIPIF1<0,只需證明SKIPIF1<0.只需證SKIPIF1<0,又SKIPIF1<0.即只需證SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0.SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減.SKIPIF1<0,即SKIPIF1<0成立,即SKIPIF1<0所以原命題成立.16.已知SKIPIF1<0是實(shí)數(shù),函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0有兩個(gè)相異的零點(diǎn)SKIPIF1<0且SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;綜上:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;(2)由(1)可知,要想SKIPIF1<0有兩個(gè)相異的零點(diǎn)SKIPIF1<0,則SKIPIF1<0,不妨設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,等價(jià)于SKIPIF1<0,而SKIPIF1<0,所以等價(jià)于證明SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,于是等價(jià)于證明SKIPIF1<0成立,設(shè)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0成立,所以SKIPIF1<0,結(jié)論得證.17.已知函數(shù)SKIPIF1<0,(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上有兩個(gè)不相等的零點(diǎn)SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)SKIPIF1<0,SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0單調(diào)遞增;②當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0單調(diào)遞減.綜上:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)∵SKIPIF1<0在SKIPIF1<0上有兩個(gè)不相等的零點(diǎn)SKIPIF1<0,SKIPIF1<0,不妨設(shè)SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上有兩個(gè)不相等的實(shí)根,令SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0要證SKIPIF1<0,即證SKIPIF1<0,又∵SKIPIF1<0,只要證SKIPIF1<0,即證SKIPIF1<0,∵SKIPIF1<0,即證SKIPIF1<0即證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0令SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上遞增,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.18.已知函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0.(1)判斷SKIPIF1<0的單調(diào)性;(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)實(shí)數(shù)根SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)SKIPIF1<0,令SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;(2)依題意,SKIPIF1<0,相減得SKIPIF1<0,令SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,欲證SKIPIF1<0成立,只需證SKIPIF1<0成立,即證SKIPIF1<0成立,即證SKIPIF1<0成立,令SKIPIF1<0,只需證SKIPIF1<0成立,令SKIPIF1<0,即證SKIPIF1<0時(shí),SKIPIF1<0成立SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0內(nèi)遞減,在SKIPIF1<0內(nèi)遞增,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0成立,故原不等式成立.19.已知函數(shù)SKIPIF1<0.(1)設(shè)函數(shù)SKIPIF1<0,且SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)求證:SKIPIF1<0;(3)設(shè)函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn)SKIPIF1<0、SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)由SKIPIF1<0可得SKIPIF1<0,可得SKIP
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版建筑材料購(gòu)銷合同書(shū)模板
- 二零二五年度臺(tái)球室租賃及品牌形象合作合同3篇
- 2025購(gòu)銷合同常用文本
- 二零二五年度全新租賃房屋合同住宅押金退還管理協(xié)議3篇
- 2025年度全新出售房屋買賣貸款擔(dān)保合同3篇
- 2025年度年度全新高空纜車運(yùn)營(yíng)意外事故免責(zé)服務(wù)協(xié)議3篇
- 二零二五年度智慧社區(qū)建設(shè)與運(yùn)營(yíng)管理協(xié)議合同范文2篇
- 2025年農(nóng)村兄弟分家協(xié)議及遺產(chǎn)分配執(zhí)行方案
- 2025年度養(yǎng)殖場(chǎng)勞務(wù)合同(養(yǎng)殖場(chǎng)安全生產(chǎn)監(jiān)管)3篇
- 二零二五年度創(chuàng)業(yè)投資股權(quán)代持專項(xiàng)合同2篇
- 漢語(yǔ)教程我聽(tīng)過(guò)鋼琴協(xié)奏曲黃河課件
- 二氧化碳充裝流程
- 12m跨鋼棧橋設(shè)計(jì)計(jì)算
- 電路板類英語(yǔ)詞匯
- DES算法Matlab代碼
- 沙特的礦產(chǎn)資源開(kāi)發(fā)概況及其商機(jī)
- 高一生物必修一期末試題(附答案)
- 安全事故應(yīng)急響應(yīng)程序流程圖(共1頁(yè))
- 三年級(jí)_上冊(cè)牛津英語(yǔ)期末試卷
- 損傷容限設(shè)計(jì)基本概念原理和方法PPT課件
- 水壓式沼氣池設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論