新高考數(shù)學(xué)二輪復(fù)習(xí)導(dǎo)數(shù)培優(yōu)專題20 極值點(diǎn)偏移問(wèn)題(含解析)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)導(dǎo)數(shù)培優(yōu)專題20 極值點(diǎn)偏移問(wèn)題(含解析)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)導(dǎo)數(shù)培優(yōu)專題20 極值點(diǎn)偏移問(wèn)題(含解析)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)導(dǎo)數(shù)培優(yōu)專題20 極值點(diǎn)偏移問(wèn)題(含解析)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)導(dǎo)數(shù)培優(yōu)專題20 極值點(diǎn)偏移問(wèn)題(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題20極值點(diǎn)偏移問(wèn)題1.極值點(diǎn)偏移的含義若單峰函數(shù)f(x)的極值點(diǎn)為x0,則極值點(diǎn)的偏移問(wèn)題的圖示及函數(shù)值的大小關(guān)系如下表所示.極值點(diǎn)x0函數(shù)值的大小關(guān)系圖示極值點(diǎn)不偏移x0=eq\f(x1+x2,2)f(x1)=f(2x0-x2)極值點(diǎn)偏移左移x0<eq\f(x1+x2,2)峰口向上:f(x1)<f(2x0-x2)峰口向下:f(x1)>f(2x0-x2)右移x0>eq\f(x1+x2,2)峰口向上:f(x1)>f(2x0-x2)峰口向下:f(x1)<f(2x0-x2)2.函數(shù)極值點(diǎn)偏移問(wèn)題的題型及解法極值點(diǎn)偏移問(wèn)題的題設(shè)一般有以下四種形式:若函數(shù)f(x)在定義域上存在兩個(gè)零點(diǎn)x1,x2(x1≠x2),求證:x1+x2>2x0(x0為函數(shù)f(x)的極值點(diǎn));若在函數(shù)f(x)的定義域上存在x1,x2(x1≠x2)滿足f(x1)=f(x2),求證:x1+x2>2x0(x0為函數(shù)f(x)的極值點(diǎn));(3)若函數(shù)f(x)存在兩個(gè)零點(diǎn)x1,x2(x1≠x2),令x0=eq\f(x1+x2,2),求證:f′(x0)>0;(4)若在函數(shù)f(x)的定義域上存在x1,x2(x1≠x2)滿足f(x1)=f(x2),令x0=eq\f(x1+x2,2),求證:f′(x0)>0.3.極值點(diǎn)偏移問(wèn)題的一般解法3.1對(duì)稱化構(gòu)造法主要用來(lái)解決與兩個(gè)極值點(diǎn)之和,積相關(guān)的不等式的證明問(wèn)題.其解題要點(diǎn)如下:(1)定函數(shù)(極值點(diǎn)為SKIPIF1<0),即利用導(dǎo)函數(shù)符號(hào)的變化判斷函數(shù)的單調(diào)性,進(jìn)而確定函數(shù)的極值點(diǎn)SKIPIF1<0.(2)構(gòu)造函數(shù),即對(duì)結(jié)論SKIPIF1<0型,構(gòu)造函數(shù)SKIPIF1<0或SKIPIF1<0;(3)對(duì)結(jié)論SKIPIF1<0型,構(gòu)造函數(shù)SKIPIF1<0,通過(guò)研究SKIPIF1<0的單調(diào)性獲得不等式.(4)判斷單調(diào)性,即利用導(dǎo)數(shù)討論SKIPIF1<0的單調(diào)性.(5)比較大小,即判斷函數(shù)SKIPIF1<0在某段區(qū)間上的正負(fù),并得出SKIPIF1<0與SKIPIF1<0的大小關(guān)系.(6)轉(zhuǎn)化,即利用函數(shù)f(x)的單調(diào)性,將SKIPIF1<0與SKIPIF1<0的大小關(guān)系轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0之間的關(guān)系,進(jìn)而得到所證或所求.3.2.差值代換法(韋達(dá)定理代換令SKIPIF1<0.)差值換元的目的也是消參、減元,就是根據(jù)已知條件首先建立極值點(diǎn)之間的關(guān)系,然后利用兩個(gè)極值點(diǎn)之差作為變量,從而實(shí)現(xiàn)消參、減元的目的.設(shè)法用差值(一般用SKIPIF1<0表示)表示兩個(gè)極值點(diǎn),即SKIPIF1<0,化為單變量的函數(shù)不等式,繼而將所求解問(wèn)題轉(zhuǎn)化為關(guān)于SKIPIF1<0的函數(shù)問(wèn)題求解.3.3.比值代換法比值換元的目的也是消參、減元,就是根據(jù)已知條件首先建立極值點(diǎn)之間的關(guān)系,然后利用兩個(gè)極值點(diǎn)的比值作為變量,從而實(shí)現(xiàn)消參、減元的目的.設(shè)法用比值(一般用SKIPIF1<0表示)表示兩個(gè)極值點(diǎn),即SKIPIF1<0,化為單變量的函數(shù)不等式,繼而將所求解問(wèn)題轉(zhuǎn)化為關(guān)于SKIPIF1<0的函數(shù)問(wèn)題求解.3.4.對(duì)數(shù)均值不等式法兩個(gè)正數(shù)SKIPIF1<0和SKIPIF1<0的對(duì)數(shù)平均定義:SKIPIF1<0對(duì)數(shù)平均與算術(shù)平均、幾何平均的大小關(guān)系:SKIPIF1<0(此式記為對(duì)數(shù)平均不等式)取等條件:當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立.3.5指數(shù)不等式法在對(duì)數(shù)均值不等式中,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,根據(jù)對(duì)數(shù)均值不等式有如下關(guān)系:SKIPIF1<0專項(xiàng)突破練1.已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0.【解析】(1)∵SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,得x=1,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故函數(shù)SKIPIF1<0的減區(qū)間為SKIPIF1<0,增區(qū)間為SKIPIF1<0;(2)由(1)知,不妨設(shè)SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,又∵SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,即SKIPIF1<0,得證.2.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0是增函數(shù),求實(shí)數(shù)a的取值范圍;(2)若SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)函數(shù)的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,若SKIPIF1<0是增函數(shù),即SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,故SKIPIF1<0恒成立,設(shè)SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以a的取值范圍是SKIPIF1<0.(2)不妨設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0是SKIPIF1<0的兩個(gè)極值點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,同理SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0是函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn),即SKIPIF1<0,由(1)知,SKIPIF1<0,故應(yīng)有SKIPIF1<0,且SKIPIF1<0,要證明SKIPIF1<0,只需證SKIPIF1<0,只需證SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,及SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0成立,即SKIPIF1<0成立.3.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的極大值;(2)設(shè)SKIPIF1<0、SKIPIF1<0是兩個(gè)不相等的正數(shù),且SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,所以,函數(shù)SKIPIF1<0的極大值為SKIPIF1<0.(2)證明:因?yàn)镾KIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,由(1)知,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,因?yàn)镾KIPIF1<0、SKIPIF1<0是兩個(gè)不相等的正數(shù),且滿足SKIPIF1<0,不妨設(shè)SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞減,又因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上連續(xù),故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),故SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上為減函數(shù),故SKIPIF1<0,則SKIPIF1<0.4.已知函數(shù)SKIPIF1<0(1)討論f(x)的單調(diào)性;(2)若SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)SKIPIF1<0

當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增;SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0SKIPIF1<0所以SKIPIF1<0單調(diào)遞減;SKIPIF1<0,SKIPIF1<0SKIPIF1<0所以SKIPIF1<0單調(diào)遞增;(2)證明:SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0由(1)可知,此時(shí)SKIPIF1<0是SKIPIF1<0的極大值點(diǎn),因此不妨令SKIPIF1<0要證SKIPIF1<0,即證:SKIPIF1<0①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立;②當(dāng)SKIPIF1<0時(shí)先證SKIPIF1<0此時(shí)SKIPIF1<0

要證SKIPIF1<0,即證:SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0即:SKIPIF1<0①令SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增∴SKIPIF1<0,∴①式得證.∴SKIPIF1<0∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0

∴SKIPIF1<0

∴SKIPIF1<05.已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0).(1)SKIPIF1<0,求函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程.(2)討論函數(shù)SKIPIF1<0的單調(diào)性;(3)若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0,所以SKIPIF1<0.所以函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(2)SKIPIF1<0的定義域?yàn)?0,+∞),SKIPIF1<0.當(dāng)a<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0在(0,+∞)上單調(diào)遞減;當(dāng)a>0時(shí),SKIPIF1<0.在SKIPIF1<0上,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞減;在SKIPIF1<0上,SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增.(3)當(dāng)SKIPIF1<0,SKIPIF1<0.由(2)知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.由題意可得:SKIPIF1<0.由SKIPIF1<0及SKIPIF1<0得:SKIPIF1<0.欲證x1+x2>2e,只要x1>2e-x2,注意到f(x)在(0,e)上單調(diào)遞減,且f(x1)=0,只要證明f(2e-x2)>0即可.由SKIPIF1<0得SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0令SKIPIF1<0則SKIPIF1<0,則g(t)在(e,2e)上是遞增的,∴g(t)>g(e)=0即f(2e-x2)>0.綜上x(chóng)1+x2>2e.6.已知函數(shù)SKIPIF1<0(1)求證:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(2)當(dāng)方程SKIPIF1<0有兩個(gè)不等實(shí)數(shù)根SKIPIF1<0時(shí),求證:SKIPIF1<0【解析】(1)令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(2)證明:由SKIPIF1<0,得SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0.

因?yàn)榉匠蘏KIPIF1<0有兩個(gè)不等實(shí)根,所以SKIPIF1<0.不妨設(shè)SKIPIF1<0.由(1)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.方程SKIPIF1<0可化為SKIPIF1<0.所以SKIPIF1<0,整理得SKIPIF1<0.①同理由SKIPIF1<0,整理得SKIPIF1<0.②由①②,得SKIPIF1<0.又因?yàn)镾KIPIF1<0所以SKIPIF1<0.法二:由SKIPIF1<0,得SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0.因?yàn)榉匠蘏KIPIF1<0有兩個(gè)不等實(shí)根,所以SKIPIF1<0.不妨設(shè)SKIPIF1<0.要證SKIPIF1<0,只要證SKIPIF1<0,只要證:SKIPIF1<0.因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,只要證:SKIPIF1<0.令SKIPIF1<0,只要證SKIPIF1<0,SKIPIF1<0恒成立.因?yàn)镾KIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,故原結(jié)論得證.7.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,證明:SKIPIF1<0;(2)若SKIPIF1<0有兩個(gè)不同的零點(diǎn)SKIPIF1<0,求a的取值范圍,并證明:SKIPIF1<0.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,定義域?yàn)镾KIPIF1<0令SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0;(2)因?yàn)镾KIPIF1<0有兩個(gè)不同的零點(diǎn)SKIPIF1<0,則SKIPIF1<0在定義域內(nèi)不單調(diào);由SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0恒成立,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,不符合題意;當(dāng)SKIPIF1<0時(shí),在SKIPIF1<0上有SKIPIF1<0,在SKIPIF1<0上有SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.不妨設(shè)SKIPIF1<0令SKIPIF1<0則SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增所以SKIPIF1<0故SKIPIF1<0,因?yàn)镾KIPIF1<0所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,則SKIPIF1<0.8.已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若SKIPIF1<0(SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù)),方程SKIPIF1<0有兩個(gè)不等實(shí)根SKIPIF1<0、SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,所以,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(2)證明:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0為增函數(shù),所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.由方程SKIPIF1<0有兩個(gè)不等實(shí)根SKIPIF1<0、SKIPIF1<0,則可設(shè)SKIPIF1<0,欲證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0得證.9.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,證明:SKIPIF1<0時(shí),SKIPIF1<0;(2)若函數(shù)SKIPIF1<0恰有三個(gè)零點(diǎn)SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.(2)SKIPIF1<0,顯然SKIPIF1<0為函數(shù)的一個(gè)零點(diǎn),設(shè)為SKIPIF1<0;設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.由已知,SKIPIF1<0必有兩個(gè)零點(diǎn)SKIPIF1<0,且SKIPIF1<0,下證:SKIPIF1<0.設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0,則SKIPIF1<0,由(1)有SKIPIF1<0,故SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即有SKIPIF1<0,由于SKIPIF1<0,且在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0.10.已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0為增函數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)若函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0、SKIPIF1<0.求證:SKIPIF1<0.【解析】(1)因?yàn)镾KIPIF1<0,該函數(shù)的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0為增函數(shù),則SKIPIF1<0恒成立.令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,所以,SKIPIF1<0,因此SKIPIF1<0.(2)因?yàn)楹瘮?shù)SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0、SKIPIF1<0,即方程SKIPIF1<0有兩個(gè)不等的實(shí)根SKIPIF1<0、SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以,SKIPIF1<0,即SKIPIF1<0、SKIPIF1<0是SKIPIF1<0的兩個(gè)根,所以SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0.由SKIPIF1<0兩式作差得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即只需證SKIPIF1<0,即證SKIPIF1<0.令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,命題得證.11.已知函數(shù)SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若函數(shù)SKIPIF1<0的圖象與SKIPIF1<0的圖象交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),證明:SKIPIF1<0.【解析】(1)SKIPIF1<0的定義域?yàn)镾KIPIF1<0令SKIPIF1<0,解得SKIPIF1<0令SKIPIF1<0,解得SKIPIF1<0所以SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,減區(qū)間為SKIPIF1<0(2)由(1)不妨設(shè)SKIPIF1<0由題知SKIPIF1<0,SKIPIF1<0兩式相減整理可得:SKIPIF1<0所以要證明SKIPIF1<0成立,只需證明SKIPIF1<0因?yàn)镾KIPIF1<0,所以只需證明SKIPIF1<0令SKIPIF1<0,則只需證明SKIPIF1<0,即證SKIPIF1<0令SKIPIF1<0SKIPIF1<0記SKIPIF1<0則SKIPIF1<0易知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增故SKIPIF1<0,即SKIPIF1<0所以,原不等式SKIPIF1<0成立.12.已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性.(2)若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.②當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.綜上所述,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)證明:因?yàn)镾KIPIF1<0為SKIPIF1<0的兩個(gè)零點(diǎn),所以SKIPIF1<0,SKIPIF1<0,兩式相減,可得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,因此,SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0得證.13.已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0時(shí),SKIPIF1<0,求SKIPIF1<0的取值范圍;(2)當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根SKIPIF1<0,證明:SKIPIF1<0.【解析】(1)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0,與已知矛盾.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,滿足條件;綜上,SKIPIF1<0取值范圍是SKIPIF1<0.(2)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,要證SKIPIF1<0,只需證SKIPIF1<0,∵SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,∴只需證SKIPIF1<0,∵SKIPIF1<0,∴只需證SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0成立,∴SKIPIF1<0.14.設(shè)函數(shù)SKIPIF1<0,已知直線SKIPIF1<0是曲線SKIPIF1<0的一條切線.(1)求SKIPIF1<0的值,并討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,其中SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增【解析】(1)設(shè)直線SKIPIF1<0與曲線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;又SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0有唯一零點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)由(1)知:SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0;要證SKIPIF1<0,只需證SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0只需證SKIPIF1<0,又SKIPIF1<0,則只需證SKIPIF1<0對(duì)任意SKIPIF1<0恒成立;設(shè)SKIPIF1<0,SKIPIF1<0;設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0時(shí)恒成立,又SKIPIF1<0,SKIPIF1<0,原不等式得證.15.已知函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn)SKIPIF1<0.(1)求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)求證:SKIPIF1<0.【解析】(1)定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0處取得極小值,也是最小值,又SKIPIF1<0,所以先保證必要條件SKIPIF1<0成立,即SKIPIF1<0滿足題意.當(dāng)SKIPIF1<0時(shí),易知,SKIPIF1<0;SKIPIF1<0由以上可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有兩個(gè)不同的零點(diǎn).(2)由題意,假設(shè)SKIPIF1<0,要證明SKIPIF1<0,只需證明SKIPIF1<0.只需證SKIPIF1<0,又SKIPIF1<0.即只需證SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0.SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減.SKIPIF1<0,即SKIPIF1<0成立,即SKIPIF1<0所以原命題成立.16.已知SKIPIF1<0是實(shí)數(shù),函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0有兩個(gè)相異的零點(diǎn)SKIPIF1<0且SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;綜上:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;(2)由(1)可知,要想SKIPIF1<0有兩個(gè)相異的零點(diǎn)SKIPIF1<0,則SKIPIF1<0,不妨設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0,等價(jià)于SKIPIF1<0,而SKIPIF1<0,所以等價(jià)于證明SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,于是等價(jià)于證明SKIPIF1<0成立,設(shè)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即SKIPIF1<0成立,所以SKIPIF1<0,結(jié)論得證.17.已知函數(shù)SKIPIF1<0,(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0上有兩個(gè)不相等的零點(diǎn)SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)SKIPIF1<0,SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0單調(diào)遞增;②當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0單調(diào)遞減.綜上:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)∵SKIPIF1<0在SKIPIF1<0上有兩個(gè)不相等的零點(diǎn)SKIPIF1<0,SKIPIF1<0,不妨設(shè)SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上有兩個(gè)不相等的實(shí)根,令SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,由SKIPIF1<0得,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0要證SKIPIF1<0,即證SKIPIF1<0,又∵SKIPIF1<0,只要證SKIPIF1<0,即證SKIPIF1<0,∵SKIPIF1<0,即證SKIPIF1<0即證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0令SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上遞增,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.18.已知函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0.(1)判斷SKIPIF1<0的單調(diào)性;(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)實(shí)數(shù)根SKIPIF1<0,SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)SKIPIF1<0,令SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;(2)依題意,SKIPIF1<0,相減得SKIPIF1<0,令SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,欲證SKIPIF1<0成立,只需證SKIPIF1<0成立,即證SKIPIF1<0成立,即證SKIPIF1<0成立,令SKIPIF1<0,只需證SKIPIF1<0成立,令SKIPIF1<0,即證SKIPIF1<0時(shí),SKIPIF1<0成立SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0內(nèi)遞減,在SKIPIF1<0內(nèi)遞增,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0成立,故原不等式成立.19.已知函數(shù)SKIPIF1<0.(1)設(shè)函數(shù)SKIPIF1<0,且SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)求證:SKIPIF1<0;(3)設(shè)函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn)SKIPIF1<0、SKIPIF1<0,求證:SKIPIF1<0.【解析】(1)由SKIPIF1<0可得SKIPIF1<0,可得SKIP

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論