版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PAGE中考總復(fù)習(xí):勾股定理及其逆定理(提高)鞏固練習(xí)【鞏固練習(xí)】一、選擇題1.(2011湖北黃石)將一個有45度角的三角板的直角頂點C放在一張寬為3cm的紙帶邊沿上,另一個頂點A在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30度角,如圖,則三角板的最大邊的長為().A.3cmB.6cmC.3cmD.6cm
2.在△中,若,則△是().
.銳角三角形.鈍角三角形.等腰三角形.直角三角形3.如圖,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,點P在BC上移動,則當(dāng)PA+PD取最小值時,△APD中邊AP上的高為().
A.B.C.D.3
4如圖,分別以直角的三邊為直徑向外作半圓.設(shè)直線左邊陰影部分的面積為,右邊陰影部分的面積和為,則().
A.B.C.D.無法確定5(2012?濟(jì)寧)如圖,在平面直角坐標(biāo)系中,點P坐標(biāo)為(-2,3),以點O為圓心,以O(shè)P的長為半徑畫弧,交x軸的負(fù)半軸于點A,則點A的橫坐標(biāo)介于().A.-4和-3之間B.3和4之間C.-5和-4之間D.4和5之間6(2012?寧波)勾股定理是幾何中的一個重要定理.在我國古書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗證勾股定理.圖2是由圖1放入矩形內(nèi)得到的,∠BAC=90°,AB=3,AC=4,點D,E,F(xiàn),G,H,I都在矩形KLMJ的邊上,則矩形KLMJ的面積為().A.90B.100C.110D.121二、填空題7.如圖,在由12個邊長都為1且有一個銳角是60°的小菱形組成的網(wǎng)格中,點P是其中的一個頂點,以點P為直角頂點作格點直角三角形(即頂點均在格點上的三角形),請你寫出所有可能的直角三角形斜邊的長________.
8.如圖,已知點F的坐標(biāo)為(3,0),點A、B分別是某函數(shù)圖象與x軸,y軸的交點,點P是此圖像上的一動點,設(shè)點P的橫坐標(biāo)為x,PF的長為d,且d與x之間滿足關(guān)系:d=5-x(0≤x≤5),則結(jié)論:①AF=2;②BF=5;③OA=5;④OB=3中,正確結(jié)論的序號是______________.
9.如圖所示,正方形ABCD的AB邊上有一點E,AE=3,EB=1,在AC上有一點P,使EP+BP最短.EP+BP的最小值是_______.10.勾股定理有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構(gòu)成,它可以驗證勾股定理.在右圖的勾股圖中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,點H在邊QR上,點D,E在邊PR上,點G,F(xiàn)在邊PQ上,那么△PQR的周長等于_________________.11.觀察下列一組數(shù):列舉:3、4、5,猜想:32=4+5;列舉:5、12、13,猜想:52=12+13;列舉:7、24、25,猜想:72=24+25;…
列舉:13、b、c,猜想:132=b+c;
請你分析上述數(shù)據(jù)的規(guī)律,結(jié)合相關(guān)知識求得b=_____,c=________.12.如圖,正方體的棱長為2,O為AD的中點,則O,A1,B三點為頂點的三角形面積為________________.三、解答題13.作長為、、的線段.14.如圖A、B為兩個村莊,AB、BC、CD為公路,BD為田地,AD為河寬,且CD與AD互相垂直?,F(xiàn)要從點E處開設(shè)通往村莊A、村莊B的一條電纜,現(xiàn)在共有兩種鋪設(shè)方案:方案一:E→D→A→B;方案二:E→C→B→A.經(jīng)測量得千米,BC=10千米,∠BDC=45°,∠ABD=15°.已知:地下電纜的修建費為2萬元/千米,水下電纜的修建費為4萬元/千米.
求:1)河寬AD(結(jié)果保留根號);
2)公路CD的長;
3)哪種方案鋪設(shè)電纜的費用低?請說明理由。
15.如圖,菱形ABCD的邊長為12cm,∠A=60°,點P從點A出發(fā)沿線路AB?BD做勻速運動,點Q從點D同時出發(fā)沿線路DC?CB?BA做勻速運動.
(1)已知點P,Q運動的速度分別為2cm/秒和2.5cm/秒,經(jīng)過12秒后,P、Q分別到達(dá)M、N兩點,試判斷△AMN的形狀,并說明理由;
(2)如果(1)中的點P、Q有分別從M、N同時沿原路返回,點P的速度不變,點Q的速度改為vcm/秒,經(jīng)過3秒后,P、Q分別到達(dá)E、F兩點,若△BEF與題(1)中的△AMN相似,試求v的值.16.劉衛(wèi)同學(xué)在一次課外活動中,用硬紙片做了兩個直角三角形,見圖①、②.圖①中,∠B=90°,∠A=30°,BC=6cm;圖②中,∠D=90°,∠E=45°,DE=4cm.圖③是劉衛(wèi)同學(xué)所做的一個實驗:他將△DEF的直角邊DE與△ABC的斜邊AC重合在一起,并將△DEF沿AC方向移動.在移動過程中,D、E兩點始終在AC邊上(移動開始時點D與點A重合).
(1)在△DEF沿AC方向移動的過程中,劉衛(wèi)同學(xué)發(fā)現(xiàn):F、C兩點間的距離逐漸________..(填“不變”、“變大”或“變小”)
(2)劉衛(wèi)同學(xué)經(jīng)過進(jìn)一步地研究,編制了如下問題:
問題①:當(dāng)△DEF移動至什么位置,即AD的長為多少時,F(xiàn)、C的連線與AB平行?
問題②:當(dāng)△DEF移動至什么位置,即AD的長為多少時,以線段AD、FC、BC的長度為三邊長的三角形是直角三角形?
問題③:在△DEF的移動過程中,是否存在某個位置,使得∠FCD=15°?如果存在,求出AD的長度;如果不存在,請說明理由.
請你分別完成上述三個問題的解答過程.【答案與解析】一.選擇題1.【答案】D.【解析】過點A作AH垂直于紙帶邊沿于點H,
在直角△AHC中,∵AH=3,∠ACH=30°,
∴AC=2AH=6,
再在等腰直角△ABC中,∵AC=6,∠B=45°,
∴AB=.
故選D.2.【答案】D.【解析】因為=4,所以,
,由勾股定理的逆定理可知:△ABC是直角三角形,答案選D.3.【答案】C.【解析】如圖,過D點作DE⊥BC于E,則DE=AB,AD=BE,EC=BC-BE=3
在Rt△CDE中,DE=,
延長AB至F,使AB=BF,連接DF,交BC于P點,連接AP,
這時候PA+PD取最小值,
∵AD∥BC,B是AF中點,
∴
在Rt△ABP中,AP=
∵
∴=,故選C.4.【答案】A.【解析】圓的面積為,設(shè)三條邊長為a,b,c,分別表示三塊陰影部分面積,用勾股定理即可.5.【答案】A.【解析】∵點P坐標(biāo)為(-2,3),
∴OP=,
∵點A、P均在以點O為圓心,以O(shè)P為半徑的圓上,
∴OA=OP=,
∵9<13<16,
∴3<<4.
∵點A在x軸的負(fù)半軸上,
∴點A的橫坐標(biāo)介于-4和-3之間.
故選A.6.【答案】C.二.填空題7.【答案】2,,,4,.【解析】如下圖,可能的直角三角形斜邊長有2,,,4,.
8.【答案】①;②;③.【解析】令x=0得到d=5,此時點P與點B重合,BF=5,由勾股定理的OB=4.令x=5得到d=2,此時點P與點A重合,可得AO=5,AF=2.9.【答案】5.【解析】根據(jù)正方形的對稱性可知:BP=DP,連接DE,交AC于P,ED=EP+DP=EP+BP,即最短距離EP+BP也就是ED.∵AE=3,EB=1,∴AB=AE+EB=4,∴AD=4,根據(jù)勾股定理得:.∵ED>0,∴ED=5,∴最短距離EP+BP=5.10.【答案】27+13.【解析】在直角△ABC中,根據(jù)三角函數(shù)即可求得AC,進(jìn)而由等邊三角形的性質(zhì)和正方形的性質(zhì)及三角函數(shù)就可求得QR的長,在直角△QRP中運用三角函數(shù)即可得到RP、QP的長,就可求出△PQR的周長.11.【答案】
84,85.【解析】認(rèn)真觀察三個數(shù)之間的關(guān)系:首先發(fā)現(xiàn)每一組的三個數(shù)為勾股數(shù),第一個數(shù)為從3開始連續(xù)的奇數(shù),第二、三個數(shù)為連續(xù)的自然數(shù);進(jìn)一步發(fā)現(xiàn)第一個數(shù)的平方是第二、三個數(shù)的和;最后得出第n組數(shù)為(2n+1),(),(),由此規(guī)律解決問題.12.【答案】.【解析】直角△AA1O和直角△OBA中,利用勾股定理可以得到OA1=OB=,
在直角△A1AB中,利用勾股定理得A1B=2,過點O作高,交A1B與M,連接AM,
則△AOM是直角三角形,則AM=A1B=,OM==,
∴△OA1B的面積=A1B?OM=.三.綜合題13.【解析】作法:如圖所示
(1)作直角邊為1(單位長度)的等腰直角△ACB,使AB為斜邊;
(2)作以AB為一條直角邊,另一直角邊為1的Rt。斜邊為;
(3)順次這樣做下去,最后做到直角三角形,這樣斜邊、、、的長度就是、、、.14.【解析】1).過B作BF⊥AD交DA延長線于F,
在Rt△ABF中,可知∠BAF=60°,AB,
∴BF=6,,
在Rt△BFD中,∵∠BDF=45°,
∴DF=BF=6,
∴
2).過B作BG⊥CD于G,則BG=6,BC=10,有CG=8,
∴DC=CG+DG=14.
3).設(shè)CE=x,則方案一、二費用分別為:
,
,
由可解得
∴當(dāng)<CE<14時,方案一較?。?/p>
當(dāng)0<CE<時,方案二較??;
當(dāng)CE=時,方案一、二均可.15.【解析】(1)∵∠A=60°,AD=AB=12,
∴△ABD為等邊三角形,故BD=12,
又∵VP=2cm/s
∴SP=VPt=2×12=24(cm),
∴P點到達(dá)D點,即M與D重合vQ=2.5cm/sSQ=VQt=2.5×12=30(cm),
∴N點在AB之中點,即AN=BN=6(cm),
∴∠AND=90°即△AMN為直角三角形;
(2)VP=2m/st=3s
∴SP=6cm,
∴E為BD的中點,
又∵△BEF與△AMN相似,
∴△BEF為直角三角形,且∠EBF=60°,∠BPF=30°,
①Q(mào)到達(dá)F1處:SQ=BP-BF1=6-=3(cm),故VQ==1(cm/秒);
②Q到達(dá)F2處:SQ=BP+=9,故VQ===3(cm/秒);
③Q到達(dá)F3處:SQ=6+2BP=18,故VQ===6(cm/秒).16.【解析】(1)變小;
(2)問題①:∵∠B=90°,∠A=30°,BC=6cm
∴AC=12
∵∠FDE=90°,∠DEF=45°,DE=4
∴DF=4cm
連接FC,設(shè)FC∥AB
∴∠FCD=∠A=30°∴在Rt△FDC中,DC=4
∴AD=AC-DC=12-4
∴AD=12-4時,F(xiàn)C∥AB;
問題②:設(shè)AD=x,在Rt△FDC中,F(xiàn)C2=DC2+FD2=(12-x)2+16
∵AC=12cm,DE=4cm,
∴AD≤8cm,
(I)當(dāng)FC為斜邊時,
由AD2+BC2=FC2得,x2+62=(12-x)2+16,x=;
(II)當(dāng)AD為斜邊時,
由FC2+BC2=AD2得,(12-x)2+16+62=x2,x=>8(不合題意舍去);
(III)當(dāng)BC為斜邊時,
由AD2+FC2=BC2得,x2+(12-x)2+16=36,x2-24x+160=0,
方程無解,
∴由(I)、(II)、(III)得,當(dāng)x=時,以線段AD、FC、BC的長度為三邊長的三角形是直角三角形;
另解:BC不能為斜邊,
∵FC>CD,∴FC+AD>12
∴FC、AD中至少有一條線段的長度大于6,
∴BC不能為斜邊,
∴由(I)、(II)、(III)得,當(dāng)x=cm時,以線段AD、FC、BC的長度為三邊長的三角形是直角三角形;
問題③:解法一:不存在這樣的位置,使得∠FCD=15,°
理由如下:
假設(shè)∠FCD=15°
∵∠EFC=30°
作∠EFC的平分線,交AC于點P
則∠EFP=∠CFP=15°,∠DFE+∠EFP=60°
∴PD=4,PC=PF=2FD=8
∴PC+PD=8+4>1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代環(huán)保材料在建筑領(lǐng)域的應(yīng)用前景
- 現(xiàn)代交通工具設(shè)計中傳統(tǒng)文化的融入方式
- 基坑安全專項方案
- 現(xiàn)代東方風(fēng)洗浴中心的節(jié)能環(huán)保裝修方案
- 2024年春九年級化學(xué)下冊 第9單元 溶液 實驗活動5 一定溶質(zhì)質(zhì)量分?jǐn)?shù)的氯化鈉溶液的配制說課稿 (新版)新人教版
- 2023三年級英語下冊 Unit 1 Animals on the farm Lesson 3 Fish and Birds說課稿 冀教版(三起)
- 2023二年級數(shù)學(xué)上冊 一 加與減第1課時 誰的得分高配套說課稿 北師大版
- 2025蓄電池產(chǎn)品及零部件檢驗合同書
- 《5 奇形怪狀的熱帶魚(圖形工具)》說課稿-2023-2024學(xué)年清華版(2012)信息技術(shù)一年級上冊
- 2024秋五年級英語上冊 Module 2 Unit 1 What did you buy說課稿 外研版(三起)
- 四年級下冊部編版語文教學(xué)參考教師用書
- 月球基地建設(shè)與運行管理模式
- 32軟件測試報告GJB438C模板
- 長期處方管理規(guī)范
- 汽車電氣設(shè)備檢測與維修中職全套教學(xué)課件
- 幼兒園大班數(shù)學(xué)PPT課件2、3、4的分解與組成
- API682機(jī)械密封沖洗方案(中文)課件
- 七年級上冊英語完形填空、閱讀理解綜合訓(xùn)練100題(含參考答案)
- DB35T 1345-2013蘭壽系列金魚養(yǎng)殖技術(shù)規(guī)范
- 祛痘產(chǎn)品原料配方與消費者祛痘方案選擇建議
- 年產(chǎn)一萬噸蓖麻項目可行性論證報告
評論
0/150
提交評論