二次根式教案6篇_第1頁
二次根式教案6篇_第2頁
二次根式教案6篇_第3頁
二次根式教案6篇_第4頁
二次根式教案6篇_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第二次根式教案6篇

二次根式教案篇1

課題:二次根式

教學(xué)目標1、知識與技能

理解a(a≥0)是一個非負數(shù),(a≥0)

2、過程與方法

(1)數(shù)學(xué)思考:學(xué)會獨立思考、體會數(shù)學(xué)的體驗歸納、類比的思想

方法

(2)問題解決:能夠利用性質(zhì)進行二次根式的化簡計算,能夠互助

交流合作,分析問題,總結(jié)反思

3、情感、態(tài)度與價值觀

體驗成功的樂趣,鍛煉克服困難的意志,培養(yǎng)嚴謹

求實的科學(xué)態(tài)度

教學(xué)重難點教學(xué)重點:二次根式的概念

教學(xué)難點:二次根式中根號下必須為非負數(shù)

教學(xué)過程

一、課前回顧

(2分鐘)

學(xué)生與老師共同回顧上節(jié)課所學(xué)內(nèi)容,溫故而知新。什么是二次根式?

二次根式中字母的取值范圍:

①被開方數(shù)大于等于零;

②分母中有字母時,要保證分母不為零。

③多個條件組合時,應(yīng)用不等式組求解

一、情境引入(3分鐘)

由生活中的實例引入投影的概念,引起學(xué)生的學(xué)習(xí)興趣

已知下列各正方形的面積,求其邊長。

二、探究1(10分鐘)

練習(xí)1:

計算下列各式:

三、探究2(10分鐘)

可以發(fā)現(xiàn)它們有如下規(guī)律:

一般的,二次根式有下列性質(zhì):

練習(xí)2:

典型例題例1:計算:

例2:計算:

達標測試(5分鐘)

課堂測試,檢驗學(xué)習(xí)結(jié)果

1、判斷題

2、若,則_的取值范圍為(a)

(a)_≤1(b)_≥1

(c)0≤_≤1(d)一切有理數(shù)

3、計算

4、化??

5、已知a,b,c為△abc的三邊長,化簡:

這一類問題注意把二次根式的運算搭載在三角形三邊之間的關(guān)系這個知識點上,特別要應(yīng)用好。

應(yīng)用提高(5分鐘)

能力提升,學(xué)有余力的同學(xué)可以仔細研究如圖,p是直角坐標系中一點。

(1)用二次根式表示點p到原點o的距離;

(2)如果求點p到原點o的距離

體驗收獲今天我們學(xué)習(xí)了哪些知識

二次根式的兩條性質(zhì)。

布置作業(yè)教材8頁習(xí)題第3、4題。

二次根式教案篇2

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

二次根式的除法法則及其逆用,最簡二次根式的概念。

2.內(nèi)容解析

二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運算的基礎(chǔ).

基于以上分析,確定本節(jié)課的教學(xué)重點:二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.

二、目標和目標解析

1.教學(xué)目標

(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);

(2)會進行簡單的二次根式的除法運算;

(3)理解最簡二次根式的概念.

2.目標解析

(1)學(xué)生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;

(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進行運算.

(3)通過觀察二次根式的運算結(jié)果,理解最簡二次根式的特征,能將二次根式的運算結(jié)果化為最簡二次根式.

三、教學(xué)問題診斷分析

本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運算過程,估計運算結(jié)果,明確運算方向.

本節(jié)課的教學(xué)難點為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.

四、教學(xué)過程設(shè)計

1.復(fù)習(xí)提問,探究規(guī)律

問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?

師生活動學(xué)生回答。

?設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.

五、目標檢測設(shè)計

二次根式教案篇3

目標

1.熟練地運用二次根式的性質(zhì)化簡二次根式;

2.會運用二次根式解決簡單的實際問題;

3.進一步體驗二次根式及其運算的實際意義和應(yīng)用價值。

教學(xué)設(shè)想

本節(jié)課的重點是:二次根式及其運算的實際應(yīng)用;難點是:例7涉及多方面的知識和綜合運用,思路比較復(fù)雜。

教學(xué)程序與策略

一、預(yù)習(xí)檢測:

1.解決節(jié)前問題:

如圖,架在消防車上的云梯ab長為15m,ad:bd=1:0.6,云梯底部離地面的距離bc為2m。你能求出云梯的頂端離地面的距離ae嗎?

歸納:

在日常生活和生產(chǎn)實際中,我們在解決一些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。

二、合作交流:

1、:如圖,扶梯ab的坡比(be與ae的長度之比)為1:0.8,滑梯cd的坡比為1:1.6,ae=米,bc=cd。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)

讓學(xué)生有充分的時間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運算?能化簡嗎?

注意解題格式

教學(xué)程序與策略

三、鞏固練習(xí):

完成課本p17、1,組長檢查反饋;

四、拓展提高:

1:如圖是一張等腰三角形彩色紙,ac=bc=40cm,將斜邊上的高cd四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

師生共同分析解題思路,請學(xué)生寫出解題過程。

五、課堂小結(jié):

1.談一談:本節(jié)課你有什么收獲?

2.運用二次根式解決簡單的實際問題時應(yīng)注意的的問題

六、堂堂清

1:作業(yè)本(2)

2:課本p17頁:第4、5題選做。

二次根式教案篇4

【學(xué)習(xí)目標】

1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負性,并能應(yīng)用它解決相關(guān)問題。

2、過程與方法:進一步體會分類討論的數(shù)學(xué)思想。

3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

【學(xué)習(xí)重難點】

1、重點:準確理解二次根式的概念,并能進行簡單的計算。

2、難點:準確理解二次根式的雙重非負性。

【學(xué)習(xí)內(nèi)容】課本第2—3頁

【學(xué)習(xí)流程】

一、課前準備(預(yù)習(xí)學(xué)案見附件1)

學(xué)生在家中認真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

二、課堂教學(xué)

(一)合作學(xué)習(xí)階段。

教師出示課堂教學(xué)目標及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標,根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進行及時的引導(dǎo)、點撥,對普遍存在的問題做好記錄。

(二)集體講授階段。(15分鐘左右)

1.各小組推選代表依次對課堂引導(dǎo)材料中的問題進行解答,不足的本組成員可以補充。

2.教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進行集體講解。

3.各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

(三)當堂檢測階段

為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進行及時的鞏固,對學(xué)生進行當堂檢測,測試完試卷上交。

(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當調(diào)整次序或交叉進行)

三、課后作業(yè)(課后作業(yè)見附件2)

教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進一步鞏固提高課堂所學(xué)。

四、板書設(shè)計

課題:二次根式(1)

二次根式概念例題例題

二次根式性質(zhì)

反思:

二次根式教案篇5

一、教學(xué)目標

1。使學(xué)生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

2。使學(xué)生掌握化簡一個二次根式成最簡二次根式的方法。

3。使學(xué)生了解把二次根式化簡成最簡二次根式在實際問題中的應(yīng)用。

二、教學(xué)重點和難點

1。重點:能夠把所給的二次根式,化成最簡二次根式。

2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

三、教學(xué)方法

通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的方法。

四、教學(xué)手段

利用投影儀。

五、教學(xué)過程

(一)引入新課

提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

了。這樣會給解決實際問題帶來方便。

(二)新課

由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

這兩個二次根式化簡前后有什么不同,這里要引導(dǎo)學(xué)生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

例1指出下列根式中的最簡二次根式,并說明為什么。

分析:

說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。

例2把下列各式化成最簡二次根式:

說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

例3把下列各式化簡成最簡二次根式:

說明:

1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

2。要提問學(xué)生

問題,通過這個小題使學(xué)生明確如何使用化簡中的條件。

通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。

注意:

①化簡時,一般需要把被開方數(shù)分解因數(shù)或分解因式。

②當一個式子的分母中含有二次根式時,一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

(三)小結(jié)

1。滿足什么條件的根式是最簡二次根式。

2。把一個二次根式化成最簡二次根式的主要方法。

(四)練習(xí)

1。指出下列各式中的最簡二次根式:

2。把下列各式化成最簡二次根式:

六、作業(yè)

教材p。187習(xí)題11。4;a組1;b組1。

七、板書設(shè)計

二次根式教案篇6

活動1、提出問題

一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責(zé)人要準備多少面積的草皮嗎?

問題:10+20是什么運算?

活動2、探究活動

下列3個小題怎樣計算?

問題:1)-還能繼續(xù)往下合并嗎?

2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進行合并。

活動3

練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

創(chuàng)設(shè)問題情景,引起學(xué)生思考。

學(xué)生回答

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論