![二次根式教案6篇_第1頁](http://file4.renrendoc.com/view/d97423fadcef59a0ad92d4c57efce183/d97423fadcef59a0ad92d4c57efce1831.gif)
![二次根式教案6篇_第2頁](http://file4.renrendoc.com/view/d97423fadcef59a0ad92d4c57efce183/d97423fadcef59a0ad92d4c57efce1832.gif)
![二次根式教案6篇_第3頁](http://file4.renrendoc.com/view/d97423fadcef59a0ad92d4c57efce183/d97423fadcef59a0ad92d4c57efce1833.gif)
![二次根式教案6篇_第4頁](http://file4.renrendoc.com/view/d97423fadcef59a0ad92d4c57efce183/d97423fadcef59a0ad92d4c57efce1834.gif)
![二次根式教案6篇_第5頁](http://file4.renrendoc.com/view/d97423fadcef59a0ad92d4c57efce183/d97423fadcef59a0ad92d4c57efce1835.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第二次根式教案6篇
二次根式教案篇1
課題:二次根式
教學(xué)目標1、知識與技能
理解a(a≥0)是一個非負數(shù),(a≥0)
2、過程與方法
(1)數(shù)學(xué)思考:學(xué)會獨立思考、體會數(shù)學(xué)的體驗歸納、類比的思想
方法
(2)問題解決:能夠利用性質(zhì)進行二次根式的化簡計算,能夠互助
交流合作,分析問題,總結(jié)反思
3、情感、態(tài)度與價值觀
體驗成功的樂趣,鍛煉克服困難的意志,培養(yǎng)嚴謹
求實的科學(xué)態(tài)度
教學(xué)重難點教學(xué)重點:二次根式的概念
教學(xué)難點:二次根式中根號下必須為非負數(shù)
教學(xué)過程
一、課前回顧
(2分鐘)
學(xué)生與老師共同回顧上節(jié)課所學(xué)內(nèi)容,溫故而知新。什么是二次根式?
二次根式中字母的取值范圍:
①被開方數(shù)大于等于零;
②分母中有字母時,要保證分母不為零。
③多個條件組合時,應(yīng)用不等式組求解
一、情境引入(3分鐘)
由生活中的實例引入投影的概念,引起學(xué)生的學(xué)習(xí)興趣
已知下列各正方形的面積,求其邊長。
二、探究1(10分鐘)
練習(xí)1:
計算下列各式:
三、探究2(10分鐘)
可以發(fā)現(xiàn)它們有如下規(guī)律:
一般的,二次根式有下列性質(zhì):
練習(xí)2:
典型例題例1:計算:
例2:計算:
達標測試(5分鐘)
課堂測試,檢驗學(xué)習(xí)結(jié)果
1、判斷題
2、若,則_的取值范圍為(a)
(a)_≤1(b)_≥1
(c)0≤_≤1(d)一切有理數(shù)
3、計算
4、化??
5、已知a,b,c為△abc的三邊長,化簡:
這一類問題注意把二次根式的運算搭載在三角形三邊之間的關(guān)系這個知識點上,特別要應(yīng)用好。
應(yīng)用提高(5分鐘)
能力提升,學(xué)有余力的同學(xué)可以仔細研究如圖,p是直角坐標系中一點。
(1)用二次根式表示點p到原點o的距離;
(2)如果求點p到原點o的距離
體驗收獲今天我們學(xué)習(xí)了哪些知識
二次根式的兩條性質(zhì)。
布置作業(yè)教材8頁習(xí)題第3、4題。
二次根式教案篇2
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的除法法則及其逆用,最簡二次根式的概念。
2.內(nèi)容解析
二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運算指明了方向,學(xué)習(xí)了除法法則后,就有比較豐富的運算法則和公式依據(jù),將一個二次根式化成最簡二次根式,是加減運算的基礎(chǔ).
基于以上分析,確定本節(jié)課的教學(xué)重點:二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.
二、目標和目標解析
1.教學(xué)目標
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
(2)會進行簡單的二次根式的除法運算;
(3)理解最簡二次根式的概念.
2.目標解析
(1)學(xué)生能通過運算,類比二次根式的乘法法則,發(fā)現(xiàn)并描述二次根式的除法法則;
(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對簡單的二次根式進行運算.
(3)通過觀察二次根式的運算結(jié)果,理解最簡二次根式的特征,能將二次根式的運算結(jié)果化為最簡二次根式.
三、教學(xué)問題診斷分析
本節(jié)內(nèi)容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學(xué)生可能會出現(xiàn)困難或容易失誤,在除法運算中,可以先計算后利用商的算術(shù)平方根的性質(zhì)來進行,也可以先利用分式的性質(zhì),去掉分母中的根號,再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進行.二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算.教學(xué)中不能只是列舉題型,應(yīng)以各級各類習(xí)題為載體,引導(dǎo)學(xué)生把握運算過程,估計運算結(jié)果,明確運算方向.
本節(jié)課的教學(xué)難點為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.
四、教學(xué)過程設(shè)計
1.復(fù)習(xí)提問,探究規(guī)律
問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
師生活動學(xué)生回答。
?設(shè)計意圖】讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.
五、目標檢測設(shè)計
二次根式教案篇3
目標
1.熟練地運用二次根式的性質(zhì)化簡二次根式;
2.會運用二次根式解決簡單的實際問題;
3.進一步體驗二次根式及其運算的實際意義和應(yīng)用價值。
教學(xué)設(shè)想
本節(jié)課的重點是:二次根式及其運算的實際應(yīng)用;難點是:例7涉及多方面的知識和綜合運用,思路比較復(fù)雜。
教學(xué)程序與策略
一、預(yù)習(xí)檢測:
1.解決節(jié)前問題:
如圖,架在消防車上的云梯ab長為15m,ad:bd=1:0.6,云梯底部離地面的距離bc為2m。你能求出云梯的頂端離地面的距離ae嗎?
歸納:
在日常生活和生產(chǎn)實際中,我們在解決一些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。
二、合作交流:
1、:如圖,扶梯ab的坡比(be與ae的長度之比)為1:0.8,滑梯cd的坡比為1:1.6,ae=米,bc=cd。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)
讓學(xué)生有充分的時間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運算?能化簡嗎?
注意解題格式
教學(xué)程序與策略
三、鞏固練習(xí):
完成課本p17、1,組長檢查反饋;
四、拓展提高:
1:如圖是一張等腰三角形彩色紙,ac=bc=40cm,將斜邊上的高cd四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。
師生共同分析解題思路,請學(xué)生寫出解題過程。
五、課堂小結(jié):
1.談一談:本節(jié)課你有什么收獲?
2.運用二次根式解決簡單的實際問題時應(yīng)注意的的問題
六、堂堂清
1:作業(yè)本(2)
2:課本p17頁:第4、5題選做。
二次根式教案篇4
【學(xué)習(xí)目標】
1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負性,并能應(yīng)用它解決相關(guān)問題。
2、過程與方法:進一步體會分類討論的數(shù)學(xué)思想。
3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。
【學(xué)習(xí)重難點】
1、重點:準確理解二次根式的概念,并能進行簡單的計算。
2、難點:準確理解二次根式的雙重非負性。
【學(xué)習(xí)內(nèi)容】課本第2—3頁
【學(xué)習(xí)流程】
一、課前準備(預(yù)習(xí)學(xué)案見附件1)
學(xué)生在家中認真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。
二、課堂教學(xué)
(一)合作學(xué)習(xí)階段。
教師出示課堂教學(xué)目標及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標,根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進行及時的引導(dǎo)、點撥,對普遍存在的問題做好記錄。
(二)集體講授階段。(15分鐘左右)
1.各小組推選代表依次對課堂引導(dǎo)材料中的問題進行解答,不足的本組成員可以補充。
2.教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進行集體講解。
3.各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。
(三)當堂檢測階段
為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進行及時的鞏固,對學(xué)生進行當堂檢測,測試完試卷上交。
(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進行適當調(diào)整次序或交叉進行)
三、課后作業(yè)(課后作業(yè)見附件2)
教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進一步鞏固提高課堂所學(xué)。
四、板書設(shè)計
課題:二次根式(1)
二次根式概念例題例題
二次根式性質(zhì)
反思:
二次根式教案篇5
一、教學(xué)目標
1。使學(xué)生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。
2。使學(xué)生掌握化簡一個二次根式成最簡二次根式的方法。
3。使學(xué)生了解把二次根式化簡成最簡二次根式在實際問題中的應(yīng)用。
二、教學(xué)重點和難點
1。重點:能夠把所給的二次根式,化成最簡二次根式。
2。難點:正確運用化一個二次根式成為最簡二次根式的方法。
三、教學(xué)方法
通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的方法。
四、教學(xué)手段
利用投影儀。
五、教學(xué)過程
(一)引入新課
提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?
了。這樣會給解決實際問題帶來方便。
(二)新課
由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)
這兩個二次根式化簡前后有什么不同,這里要引導(dǎo)學(xué)生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。
總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:
1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。
2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。
例1指出下列根式中的最簡二次根式,并說明為什么。
分析:
說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。
例2把下列各式化成最簡二次根式:
說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。
例3把下列各式化簡成最簡二次根式:
說明:
1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。
2。要提問學(xué)生
問題,通過這個小題使學(xué)生明確如何使用化簡中的條件。
通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。
注意:
①化簡時,一般需要把被開方數(shù)分解因數(shù)或分解因式。
②當一個式子的分母中含有二次根式時,一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。
(三)小結(jié)
1。滿足什么條件的根式是最簡二次根式。
2。把一個二次根式化成最簡二次根式的主要方法。
(四)練習(xí)
1。指出下列各式中的最簡二次根式:
2。把下列各式化成最簡二次根式:
六、作業(yè)
教材p。187習(xí)題11。4;a組1;b組1。
七、板書設(shè)計
二次根式教案篇6
活動1、提出問題
一個運動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運動場的負責(zé)人要準備多少面積的草皮嗎?
問題:10+20是什么運算?
活動2、探究活動
下列3個小題怎樣計算?
問題:1)-還能繼續(xù)往下合并嗎?
2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進行合并。
活動3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問題情景,引起學(xué)生思考。
學(xué)生回答
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學(xué)年度學(xué)校道德講堂工作計劃范文
- 高一語文學(xué)習(xí)計劃
- 2025年度新型智慧社區(qū)物業(yè)代管服務(wù)合同范本
- 兼職老師分成合同范本
- 代理協(xié)議協(xié)議合同范本
- 交強險合同范本
- 公司股東業(yè)務(wù)合同范本
- 養(yǎng)生行業(yè)員工合同范本
- 出租快艇合同范本
- 人才派遣服務(wù)合同范本
- 紅樓夢詩詞全集
- 像科學(xué)家一樣思考-怎么做-怎么教-
- 苯胺合成靛紅工藝
- 三年級上冊數(shù)學(xué)脫式計算大全600題及答案
- 2024年度農(nóng)村電子商務(wù)ppt演示課件
- 計算機控制系統(tǒng) 課件 第10章 網(wǎng)絡(luò)化控制系統(tǒng)的分析與設(shè)計
- 高原反應(yīng)的癥狀和處理方法
- 南京大學(xué)儀器分析習(xí)題集
- 空調(diào)維保應(yīng)急預(yù)案
- 2023年高考語文全國乙卷作文范文及導(dǎo)寫(解讀+素材+范文)課件版
- 模塊建房施工方案
評論
0/150
提交評論