![材料科學(xué)基礎(chǔ)課件_第1頁](http://file4.renrendoc.com/view/e8fbe52ee05136bf7693413cd3db026e/e8fbe52ee05136bf7693413cd3db026e1.gif)
![材料科學(xué)基礎(chǔ)課件_第2頁](http://file4.renrendoc.com/view/e8fbe52ee05136bf7693413cd3db026e/e8fbe52ee05136bf7693413cd3db026e2.gif)
![材料科學(xué)基礎(chǔ)課件_第3頁](http://file4.renrendoc.com/view/e8fbe52ee05136bf7693413cd3db026e/e8fbe52ee05136bf7693413cd3db026e3.gif)
![材料科學(xué)基礎(chǔ)課件_第4頁](http://file4.renrendoc.com/view/e8fbe52ee05136bf7693413cd3db026e/e8fbe52ee05136bf7693413cd3db026e4.gif)
![材料科學(xué)基礎(chǔ)課件_第5頁](http://file4.renrendoc.com/view/e8fbe52ee05136bf7693413cd3db026e/e8fbe52ee05136bf7693413cd3db026e5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
材料科學(xué)基礎(chǔ)
FundamentalofMaterials
LessononeMaterialsSciencedealswiththerelationshipbetweenthemacroscopicpropertiesandthemicroscopicstructures.§1.1AtomicstructureⅠ.Atomicnumbersandatomicmasses1.AtomicModelsChapterIAtomicStructureandBonding2.AtomicnumbersTheatomicnumberofanatomindicatesthenumberofprotons(positivelychargedparticles)whichareinitsnucleus,andinaneutralatomtheatomicnumberisalsoequaltothenumberofelectronsinitschargecloud.Alltheelementshavebeenclassifiedaccordingtoelectronconfigurationintheperiodictable.Theperiodictable
IA
堿金屬堿土金屬過渡元素
01HIIA
主族金屬非金屬稀有氣體
IIIAIVAVAVIAVIIAHe2LiBe
輕稀土金屬重稀土金屬貴金屬
BCNOFNe3NaMgIIBIVBVBVIBVIIBVIIBIBIIBAlSiPSClAr4KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr5RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXe6CsBaLaHfTaWReOsIrPtAuHgTlPbBiPoAtRn7FrRaAcRfDbSgBhHsMtUunUuuUub
鑭系LaCePrNdPmSmEuGdTbDyHoErTmYbLu
錒系A(chǔ)cThPaUNpPuAmCmBkCfEsFmMdNoLr
3.AtomicmassTherelativeatomicmassofanelementisthemassingramsof6.023×1023atoms(Avogadro’snumberNA)ofthatelement.Ⅱ.Theelectronicstructureofatoms1.Quantumnumbers
Quantumnumbersarethenumbersinanatomthatassignelectronstodiscreteenergylevels.Theenergyleveltowhicheachelectronbelongsisdeterminedbyfourquantumnumbers.
Theprincipalquantumnumber
n
Thesubsidiaryquantumnumber
l
Themagneticquantumnumber
mlElectronspinquantumnumberms2.Atomicsize3.Electronconfigurations
PauliexclusionprincipleThisprinciplestipulatesthateachelectronstatecanholdnomorethantwoelectrons,whichmusthaveoppositespins.Electronswiththesamesubsidiaryquantumnumberhaveasmanyparallelspinsaspossible.3.Electronegativity
Electronegativeelementsarenonmetallicinnatureandacceptelectronsinchemicalreactionstoproducenegativeions,oranions.Electronegativitydescribesthetendencyofanatomtogainanelectron.Foratomicsystems:Bondingenergies:Ⅱ.Primaryinteratomicbonds
1.Ionicbonding
Ionicbondingisalwaysfoundincompoundsthatarecomposedofbothmetallicandnonmetallicelements,elementsthataresituatedatthehorizontalextremitiesoftheperiodictable.InterionicForces
Z1,Z2=numberofelectronsremovedoraddedfromtheatomsduringtheionformatione
=electroncharge
a
=interionicseparationdistance
ε0=permittivityoffreespace=8.85×10-12C2/(N·m2)InterionicEnergiesAttractiveenergyRepulsiveenergyExampleproblem2.1
IftheattractiveforcebetweenapairofMg2+andS2-is1.49×10-8NandiftheS2-ionhasaradiusof0.184nm,calculateavaluefortheionicradiusoftheMg2+ioninnanometers.Solution2.CovalentbondingMaterialswithcovalentbondingarecharacterizedbybondsthatareformedbysharingofvalenceelectronsamongtwoormoreatoms.3.MetallicbondingMetallicbondingoccursinsolidmetals.Inmetalsinsolidstate,atomsarepackedrelativelyclosetogetherinasystematicpatternorcrystalstructure.Ⅲ.Secondarybonding
(VanDerwaalsbonding)Thedrivingforceforsecondarybondingistheattractionoftheelectricdipolescontainedinatomsormolecules.Anelectricdipolemomentiscreatedwhentwoequalandoppositechargesareseparated.NeutralatomEVanDerwaalsbondingAdipolemomentisdefinedasthechargevaluemultipliedbytheseparationdistancebetweenpositiveandnegativecharges,orLondonforcesIftheinteractionsarebetweentwodipolesthatareinducedinatomsormolecules,werefertothemasLondonforces.1.VanderwaalsinteractionsDebyeforcesWhenaninduceddipoleinteractswithamoleculethathasapermanentdipolemoment,werefertothisinteractionasaDebyeinteraction.KeesomforcesIftheinteractionsarebetweenmoleculesthatarepermanentlypolarized,werefertotheseasKeesominteraction.2.SecondarybondingFluctuatingDipolebondsThesebondingforcesarisebecausetheasymmetricaldistributionofelectronchargedistributionintheseatomscreateselectricdipoles.PermanentDipolebondsPermanentDipolebondsexistbetweenadjacentpolarmolecules.3.MixedbondingIonic-CovalentMixedbonding
Metallic-CovalentMixedBondingMetallic-IonicMixedBondingXAandXBaretheelectronegativitiesoftheatomsAandBinthecompound2.Classificationofmaterialsbasedonstructure
Regularityinatomarrangement——periodicornot(amorphous)Crystalline:Thematerialsatomsarearranged inaperiodicfashion.Amorphous:Thematerial’satomsdonothave along-rangeorder(0.1~1nm).Singlecrystal:intheformofonecrystal
grainsPolycrystalline:
grainboundariesⅡ.Spacelattice1.
Definition:Spacelatticeconsistsofanarrayofregularlyarrangedgeometricalpoints,calledlatticepoints.The(periodic)arrangementofthesepointsdescribestheregularityofthearrangementofatomsincrystals.2.
TwobasicfeaturesoflatticepointsPeriodicity:Arrangedinaperiodicpattern.Identity:Thesurroundingsofeachpointinthelatticeareidentical.Alatticemaybeone,two,orthreedimensionaltwodimensionsSpacelatticeisapointarraywhichrepresentstheregularityofatomarrangements
(1)(2)(3)
a
bThreedimensions
EachlatticepointhasidenticalsurroundingenvironmentⅢ.UnitcellandlatticeconstantsUnitcellisthesmallestunitofthelattice.Thewholelatticecanbeobtainedbyinfinitiverepetitionoftheunitcellalongit’sthreeedges.Thespacelatticeischaracterizedbythesizeandshapeoftheunitcell.Howtodistinguishthesizeandshapeofthedeferentunitcell?
Thesixvariables,whicharedescribedbylatticeconstants
——
a,b,c;α,β,γLatticeConstantsa
c
b
αβγa
c
b
αβγ§2.2CrystalSystem&LatticeTypes
Ifarotationaroundanaxispassingthroughthecrystalbyanangleof360o/ncanbringthecrystalintocoincidencewithitself,thecrystalissaidtohavean-foldrotationsymmetry.Andaxisissaidtoben-foldrotationaxis.
Weidentify14typesofunitcells,orBravaislattices,groupedinsevencrystalsystems.Ⅰ.Sevencrystalsystems
Allpossiblestructurereducetoasmallnumberofbasicunitcellgeometries.Thereareonlyseven,uniqueunitcellshapesthatcanbestackedtogethertofillthree-dimensional.Wemustconsiderhowatomscanbestackedtogetherwithinagivenunitcell.SevenCrystalSystemsTriclinica≠b≠c
,α≠β≠γ≠90°Monoclinica≠b≠c
,α=β=90°≠γ
α=γ=90°≠βOrthorhombica≠b≠c
,α=β=γ=90°Tetragonala=b≠c
,α=β=γ=90°Cubica=b=c
,α=β=γ=90°Hexagonala=b≠c
,α=β=90°γ=120°Rhombohedrala=b=c
,α=β=γ≠90°Ⅱ.14typesofBravaislattices1.DerivationofBravaislatticesBravaislatticescanbederivedbyaddingpointstothecenterofthebodyand/orexternalfacesanddeletingthoselatticeswhichareidentical.7×4=28Deletethe14typeswhichareidentical28-14=14+++PICF2.14typesofBravaislatticeTricl:simple(P)Monocl:simple(P).base-centered(C)Orthor:simple(P).body-centered(I).base-centered(C).face-centered(F)Tetr:simple(P).body-centered(I)Cubic:simple(P).body-centered(I).face-centered(F)Rhomb:simple(P).Hexagonal:simple(P).Crystalsystems(7)Latticetypes(14)PCFI
ABC1Triclinic√2Monoclinic√√or√(γ≠90°orβ≠
90°
)3Orthorhombic√√or√or√√√4Tetragonal√√5Cubic√√√6Hexagonal√7Rhombohedral√SevencrystalsystemsandfourteenlatticetypesⅢ.PrimitiveCellForprimitivecell,thevolumeisminimumPrimitivecellOnlyincludesonelatticepointⅣ.ComplexLatticeTheexampleofcomplexlattice120o120o120oExamplesandDiscussions1.Whyarethereonly14spacelattices?
ExplainwhythereisnobasecenteredandfacecenteredtetragonalBravaislattice.P→CI→FButthevolumeisnotminimum.2.CriterionforchoiceofunitcellSymmetryAsmanyrightangleaspossibleThesizeofunitcellshouldbeassmallaspossibleExercise1.Determinethenumberoflatticepointspercellinthecubiccrystalsystems.Ifthereisonlyoneatomlocatedateachlatticepoint,calculatethenumberofatomsperunitcell.2.DeterminetherelationshipbetweentheatomicradiusandthelatticeparameterinSC,BCC,andFCCstructureswhenoneatomislocatedateachlatticepoint.3.DeterminethedensityofBCCiron,whichhasalatticeparameterof0.2866nm.+=Fe:Al=1:1FeAlThedifferencebetweenspacelatticeandcrystalstructure2×3atoms/cell1.BCC
Example:α-Fe,V,Nb,Ta,Cr,Mo,W,alkalimetals
n=
2atoms/cell
CN=8
Thenumberofnearestneighboursaroundeachatomiscalled——CoordinationNumber.Ⅱ.Typicalcrystalstructuresofmetals
Packingfraction
=
Todetermineξ,Theatomislookedasahardsphere,andthenearestneighbourstoucheachother.∴ForBCC,
Volumeofatoms/cellVolumeofunitcell2.FCC
Example:
γ-Fe,Al,Ni,Pb,Cu,Ag,Au,stainlesssteal
n=8×1/8+6×1/2=4atoms/cell
CN=12
3.HCP?????????????????
Example:
Be,Mg,Zn,Cd,Zr,HfTi(lowtemperature)
n=
CN=12
ξ=0.74Structurea0
vs.rAtomspercellCoordinationNumberPackingfactorExamplesSC160.52Polonium(Po),α-MnBCC280.68Fe,Ti,W,Mo,Nb,Ta,K,Na,V,Zr,CrFCC4120.74Fe,Cu,Au,Pt,Ag,Pb,NiHCP2120.74Ti,Mg,Zn,Be,Co,Zr,Cd4.Summary§2.4IntersticesintypicalcrystalsofmetalsⅠ.TwotypesofInterstitialsintypicalcrystals
Octahedralinterstitial
TetrahedralinterstitialDefinition:
Inanyofthecrystalstructures,therearesmallholesbetweentheusualatomsintowhichsmalleratomsmaybeplaced.Theselocationsarecalledinterstitialsites.1.OctahedralinterstitialBCCFCCHCP2.TetrahedralinterstitialBCCFCCHCPⅡ.Determinationofthesizesof
interstitialsDefinition:
Bysizeofaninterstitialwemeandiameterofthemaximumhardspherewhichcanbeaccommodatedintheinterstitialwithoutdistortingthelattice.didadiameterofinterstitialatomdiameterofatominlatticepoint=Octahedralinterstitialconditionfortouching
ForBCCForFCCTetrahedralinterstitialHLADCBinterstitialhostatomForBCCForFCCSummarynCNξintersticesdi/daoct.tete.oct.tete.BCC280.6866/2=31212/2=60.150.29FCC4120.7444/4=188/4=20.410.22HCP6120.7466/6=11212/6=20.410.22ExamplesandDiscussionsBothFCCandBCCareclose-packedstructureswhileBCCismoreopen?Theinterstitialatomsmostlikelyoccupytheoct.interstitialpositioninFCCandHCP,whileinBCCtwotypesofinterstitialcanbeoccupiedequally.3.ThesolidsolubilityinBCCismuchlowerthaninFCC.4.DiffusionofinterstitialatomsinBCCdiffusionismuchfasterthaninFCCorHCPatsametemperature.5.DeterminetherelationshipbetweentheatomicradiusandthelatticeparameterinSC,BCC,andFCCstructureswhenoneatomislocatedateachlatticepoint.6.DeterminethedensityofBCCiron,whichhasalatticeparameterof0.2866nm.Solution:ForaBCCcell,Atoms/cell=2
a0=0.2866nm=2.866×10-8cmAtomicmass=55.847g/molVolumeofunitcell=a03=23.54×10-24cm3/cellDensity1.Stepstodeterminatetheplaneindices:
Establishasetofcoordinateaxes
Findtheinterceptsoftheplanestobeindexedona,b
and
caxes(x,y,z).a
c
b
x
y
z
Ⅱ.PlaneindicesTakethereciprocalsoftheintercepts1/x,1/y,1/z.Clearfractionsbutdonotreducetolowestintegers.Enclosetheminparentheses,(hkl)
Example:1/2,1,2/32,1,3/2(423)
Planeindicesreferredtothreeaxesa,b
and
c
arealsocalledMillerIndices.SeveralimportantaspectsoftheMillerindicesforplanesshouldbenoted:
Planesandtheirnegativesareidentical.Therefore.
Planesandtheirmultiplesarenotidentical.
Incubicsystems,adirectionthathasthesameindicesasaplaneisperpendiculartothatplane.2.Theimportantplanesincubiccrystals(110)(112)(111)(001)3.Afamilyofplanesconsistsofequivalentplanessofarastheatomarrangementisconcerned.Total:6Total:4Total:12Total:4×3!=24Ⅲ.DirectionIndices1.DerivationforthecrystallographicdirectionAsthefirstabove,settheoriginonthedirectiontobeindexed.Findthecoordinatesofanotherpointonthedirectioninquestions.Reducetothreesmallestintegers:u,v,w.Encloseinsquarebrackets[uvw].2.Theimportantdirectionincubiccrystals:<100>:crystalaxes<110>:facediagonal<111>:bodydiagonal<112>:apicestooppositeface-centers3.Familyofdirectionsconsistsofcrystallographicallyequivalentdirections,denoted<uvw>e.g.
§2.6HexagonalaxesforhexagonalcrystalsⅠ.Whychoosefour-axissystem?
Fourindiceshasbeendevisedforhexagonalunitcellsbecauseoftheuniquesymmetryofthesystem.acbⅡ.Planeindices(hkil)Itcanbeproved:i≡-(h+k)Importantplanes:a1a2a3cⅢ.Directionindices[uvtw]
Tomaketheindicesunique,anadditionalconditionisimposed.----Let
t=-(u+v)ImportantdirectionsTransformationofindicesTransformationof3to4indices,orviceversa.Supposewehaveavector,whose3indices[uvw],and4indices[uvtw].WehaveSinceor:Forexample:1.Quickwayforindexingthedirectionsincubiccrystals:Thevalueofadirectiondependsonitsfeaturewhilethesignondirection.ExamplesandDiscussions2.Thecoordinateorigincanbesetarbitrarily(forexampleonapices,body-center,face-centersetc.),butneveronplaneinquestions,otherwisetheinterceptswouldbe0,0,0.3.Thecoordinatesystemcanbetransferredarbitrarily,butrotationisforbidden.c′
a
c
b
a′
b′
4.Theatomicarrangementandplanardensityoftheimportantdirectionincubiccrystal.planeindicesBCCFCCatomicarrangementplanardensityatomicarrangementplanardensity{100}{110}{111}5.Theatomicarrangementandlineardensityoftheimportantdirectionincubiccrystal.linearindicesBCCFCCatomicarrangementlineardensityatomicarrangementlineardensity<100><110><111>ExerciseCalculatetheplanardensityandplanarpackingfractionforthe(010)and(020)planescubicpolonium,whichhasalatticeparameterof0.334nm.Solution4.Thezone[uvw]containstwoplanes(h1k1l1)and(h2
k2
l2),then5.Theplane(hkl)belongstotwozones[u1
v1
w1]and[u2
v2
w2]if6.Thedistancebetweenadjacentplane(interplanardistance)
d(hkl)=f(a,b,cα,β,γh,k,l)Fororthorhombic:
Forcubic:Forhexagonalcrystals:7.Thelengthof[uvw]Forcubic:8.TheangleФbetween(h1
k1
l1)and(h2
k2l2)Fororthorhombic:Forcubic:Forhexagonal:9.Theangle
between[u1
v1
w1]and[u2
v2
w2]Fororthorhombic:Forcubic:Forhexagonal:10.Thevolumeofunitcells
V§2.8StackingModeofCrystalsⅠ.Acrystalcanbeconsideredas theresultofstackingtheatomic layers,say(hkl),oneover anotherinaspecificsequence.Forsimplecubic(001)aaaa……(110)abab……ThissequenceiscalledthestackingorderⅡ.Comparisonofstackingmodeof HCPandFCCHCPstackingorder:ABABABAB……1.HCP2.FCCStackingorderof(111):ABCABCABC……AAABBBCCCⅢ.StackingfaultForHCP:
normalorder:ABABAB……faultorder:ABCABAB……ForFCC:
normalorder:ABCABCABC……faultorder:ABCACABCA……ABCACBCABC……ABCABABAB……ABCACBA……Ⅳ.TransformationofhexagonaltorhombohedralindicesandviceversacHaHbHcRaRbRsinglecrystalpolycrystalgraingrainboundaryⅡ.AllotropySamecrystalhasdifferentcrystallographicstructureatdifferentcondition.
Examples:C,graphite,diamond,CNTBCCBCCFCCGraphiteC60moleculeCarbonNanotubes§3.1BasicconceptsofalloysⅠ.DefinitionAnalloyisthecombinationofmetal(s)withotherelementsthroughchemicalbonding.
Ⅱ.Terminology
1.
Component(orconstituent)onecomponentsystemtwocomponentsystembinarysystemthreecomponentsystemternarysystemfourcomponentsystemquarternarysystemfivecomponentsystemquinarysystemmulti-componentsystem2.
CompositionItcanbeexpressedeitherbyatomicpercentage(molfraction)XaorbymasspercentageXm3.PhaseAphaseisahomogeneouspartofthematerialinwhichnoabruptchangeincomposition,structureandpropertiesoccurs.Analloymaybesinglephaseormulti-phasematerial.4.StructureStructureisageneraltermforthecombinationofatomarrangementincludingthetypesamountsanddistributionofalltypesofmaterialaswellasgrainsize,defectetc.Ⅲ.ClassificationofAlloyPhases1.AccordingtostructureSolidSolutionCompoundInSolidSolution,atomsofdifferentcomponentshareacommonlatticeinvariableproportion.2.AccordingtopositionofthealloyinphasediagramTerminalS.S.
IntermediateS.S.orsecondaryS.S.
αBAβα+β§3.2FactorsAffectingtheStructureofAlloyPhase1.WhatissizefactormetallicradiirA+rB=dionicradiir++r-=dcovalentradiisinglebondradiusVanderWaalsradiiAtomicradii
CNradiiBCCFCC
CNofBCC:8()+6(a)CNofFCC:12()rα==rβ===0.12557nm=0.128674nmGoldschmidtatomicradiiistheradiiofatominstructureswithCN=12Sizefactorisdefinedas
2.WhatisElectrochemicalfactor——ElectronegativityXXrepresentstheabilityofanatomofanelementinthecompondtoattractelectronstoitself.Pauli’sempiricalrule:n:valence
r(1):simplebondradiusEAA——bondingenergybetweenA-A
atomsEBB——bondingenergybetweenB-BatomsEAB——bondingenergybetweenA-B
atoms3.Electronconcentration(e/a)Electronconcentration(e/a)isthenumberofvalenceelectronsperatomontheaverage.i.g.forCuZn:e/a=3/2=1.5§3.3SolidSolutionⅠ.Classification1.AccordingthepositionofsoluteatomsinthelatticeofthesolventSubstitutionalS.S.InterstitialS.S.2.AccordingtheregularityofthepositionoccupiedbysoluteatomsOrderedS.S.DisorderedS.S.1+3+12×1/4+4+1=12∴Fe12Al4=Fe3Al3.Accordingtosolidsolubility0~100%continuousseriesofS.SS.SwithrestrictedsolubilitysummarysubstitutionalS.Sprimary(terminal)interstitialS.Ssecondary(intermediate)orderedS.ScontinuousS.SdisorderedS.SS.SwithrestrictedsolubilityEx.Writeoutinfullthecoordinatesofallcationsandanionsinnucleus,WurtziteandCaF2referredtoabc
axesoftheanionssublattice.Ⅱ.DeterminationoftypesofS.S∴
istheaverageatomicweighweightedbycomposition
Comparenwithno(atomsperunitcellofsolvent)
n=no:idealsubstitutionalS.S.
n>no:interstitialS.S.
n<no:vacantS.S.Ⅲ.Hume-RotheryRuleforprimarysolidsolubility1.Sizefactor:Sizefactor=×100%d0-dtd0
Ifsizefactor>15%solubilityisverysmall.NiOcanbeaddedtoMgOtoproduceasolidsolution.Whatotherceramicsystemsarelikelytoexhibit100%solidsolubilitywithMgO?r(?)crystalstructureCd+2inCdO0.9747NaClCa+2inCaO0.9950NaClCo+2inCoO0.729NaClFe+2inFeO0.7412NaClSr+2inSrO1.1270NaClZn+2inZnO0.7412NaClFeO-MgOsystemwillprobablydisplayunlimitedsolidsolubility.CoOandZnOsystemsalsohaveappropriateradiusratiosandcrystalstructures.Exampled01.15d00.85d0dZZ1Z2
2.CrystalstructureThematerialsmusthavethesamecrystalstructure;otherwisethereissomepointatwhichatransitionoccursfromonephasetoasecondphasewithadifferentstructure.
3.Electrochemicalfactor
IfthedifferenceinXisgreat,thesolubilityisalsoveryrestricted.Formationofstablecompoundwillrestrictthesolidsolubility.Parameter:Electronegativity(x)
SemiemperiesformulasWhere:r1——singlebondradius
n——valencyx0x0+0.4x0-0.4xRR00.85R01.15R0Dorken-Gurrygraphic
4.Electronconcentrationfactor,e/a
e:thenumberofvalenceelectrons
a:thenumberofatoms
e/a
=averagenumberofvalenceelectronsperatom.
Experimentalfindings:Zn,Ga,Ge,AsinCu(solute-solvent)
Ifcompositionisexpressedintermsofe/aratherthanat%,thesolidsolubilityofallelementsinCuwillberoughlythesame.
Structurevs.e/a
forCuZnalloysystem
α(CuZn)——e/a=3/2=21/14
β(Cu5Zn8)——e/a=21/13
γ(CuZn3)
——e/a=7/4=21/12
Ⅳ.PropertiesofS.S1.latticeconstantsproperties
Vagard’slaw
ass=ao+(a-ao)xforalloyS.S
Δa=K(ZA-ZB)2
ZA,ZBarevalencesofsoluteandsolvent.
aCuAuNix1.00正偏差負偏差
ro>r++r-
ro=r++r-
stableioniccompound
ro<r++r-
thereissomecovalentboundingstableunstableanionpolyhedronCN+()minhexahedron80.732octahedron60.414tetrahedron40.225trigonal30.1552.ValenceruleThereisadefiniterelationbetweenvalenceandCN.LetSbethestrengthofelectrostaticbondingbetweenapairofanionandcation
ifS1=S2=……=S,Then
Z
=(CN-)×S=(CN-)×(Z+/CN+)3.Theanionpolyhedronprefertoshareapexinsteadofsharingedgesorfaces:§3.5CrystalStructureofCeramicMaterials
ABAB2A2B3ABO3AB2O4Ⅰ.ABtype
1.NaCl
r+/r-=0.54∴octahedron=>
CN+=6
Z-=1=CN-(Z+/CN+)=CN-×1/6∴CN-=6
2.CsCl
r+/r-=0.91
∴hexahedron=>CN+=8
Z-=1=CN-(Z+/CN+)=CN-×1/8∴CN-=83.Zincblende(ZnS)CN-=4 CN+
=44.Wurtzite(ZnS,ZnO)S(O)=1/2+1/2+1
=2Zn=1/4×4+1
=2Ⅱ.AB2type1.Fluorspar(CaF2)Li2ONa2OCN+
=8CN-
=42.Rutile(TiO2)Ⅲ.A2B3type()Ⅳ.ABO3type(BaTiO3,CaTiO3)Ⅱ.Formation
A→←BThepropertyofAmBnisbetweenthatofAandB.Ⅲ.Factorgoverningthestructureof“compounds”.1)Electrochemicalfactor(X)2)Electronconcentration(e/a)3)SizefactorMetalNonmetalMetalloid§3.7NormalValenceCompoundsⅠ.Definition:
Ifthenumberofvalenceelectronsofthecationissufficienttocompleteoctahedronoftheanion,thecompoundiscalledthenormalvalencecompounds.Example:CmAn
meC=n(8-eA)sometimes:m(eC-eCC)=n(8-eA-eAA)Ⅱ.Classification
accordingtostructure1.NaClandCaF2types
NaCl:(MgCaSrBa)(SeTe)(MnPbSn)(SeTe)CaF2:PtSn2PtIn2Pt2PAnti-CaF2:Mg2(SiGeSnPb)Cu2SeLi3AlN2LiMg(NAsSbBi)AgMgAs
2.Diamond,Zincblende,WurtzitetypesZincblende:(BeZnCaHg)(SSeTe)(AlGaIn)(PAsSb)Wurtzite:(ZnCdMn)S(CdMn)Se3.NiAsstructureExample:
(CrFeCoNi)(SSeSb)(FeCo)Te(MnFeNiPtCn)SnNi(AsSbBi)StructureNormalstate——Ni:As=1:1WhenNidoesnotfullfilloctahedralinterspaces
Ni:As<1:1Extremestate:Nioccupytrigonalinterspaces
Ni:As>1:14.ElectronPhase(Electroncompounds)ForAlloysofIBortransitionmetals,andBgroupmetalsphaseswithsaneorsimilarstructureoccuratapproximatelysomeelectronconcentration(e/a)thesealloysarethereforecalledaselectroncompounds§3.8ElectronPhases
(Hume-Rotheryphases)Feature:⑴Identicalonsimilarstructureoccuratapproximatelythesameelectronconcentration,e/a.Forexample:
CuZn:βCu5Zn8:γCuZn3:ε(HCP)
β:(2+1)/2=21/14
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中圖版(北京)八年級地理上冊2.2《主要的氣候類型》聽課評課記錄
- 人教版七年級地理上冊:1.1《地球和地球儀》聽課評課記錄3
- 2025年高性能鐵氧體一次料合作協(xié)議書
- 星球版地理八年級上冊《第一節(jié) 合理利用土地資源》聽課評課記錄3
- 人教版歷史八年級下冊第13課《香港和澳門的回歸》聽課評課記錄
- 魯教版地理七年級下冊9.1《自然特征與農(nóng)業(yè)》聽課評課記錄1
- 五年級數(shù)學(xué)下冊聽評課記錄《第4單元 3分數(shù)的基本性質(zhì)》人教版
- 粵人版地理八年級上冊《第三節(jié) 水資源》聽課評課記錄1
- 湘教版數(shù)學(xué)七年級下冊1.3《二元一次方程組的應(yīng)用》聽評課記錄1
- 蘇科版九年級數(shù)學(xué)聽評課記錄:第80講期中期末串講
- 高校體育課程中水上運動的安全保障措施研究
- GB 12710-2024焦化安全規(guī)范
- 中石化高級職稱英語考試
- 2023年上海市閔行區(qū)精神衛(wèi)生中心醫(yī)護人員招聘筆試題庫及答案解析
- 水庫工程施工組織設(shè)計
- 氣流粉碎機課件
- 梁若瑜著-十二宮六七二象書增注版
- SJG 74-2020 深圳市安裝工程消耗量定額-高清現(xiàn)行
- 2017年安徽省中考數(shù)學(xué)試卷及答案解析
- 礦山安全知識培訓(xùn)PPT課件
- 鐵路乘車證管理辦法
評論
0/150
提交評論