版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題6-1等差數(shù)列,等比數(shù)列中性質(zhì)應(yīng)用(選填)目錄TOC\o"1-1"\h\u專題6-1等差數(shù)列,等比數(shù)列中性質(zhì)應(yīng)用(選填) 1 1題型一:等差(等比)數(shù)列中項(xiàng) 1題型二:等差(等比)數(shù)列下角標(biāo)和性質(zhì) 5題型三:等差(等比)數(shù)列單調(diào)性問(wèn)題 9等比數(shù)列的單調(diào)性 13題型四:等差(等比)數(shù)列中最大(小)項(xiàng) 16題型五:等差(等比)數(shù)列奇偶項(xiàng)問(wèn)題 21題型六:等差(等比)數(shù)列片段和性質(zhì) 26題型七:兩個(gè)等差數(shù)列前SKIPIF1<0項(xiàng)和之比問(wèn)題 31 36一、單選題 36二、多選題 42三、填空題 44題型一:等差(等比)數(shù)列中項(xiàng)【典例分析】例題1.(2022·四川·廣安二中模擬預(yù)測(cè)(文))已知數(shù)列SKIPIF1<0是等比數(shù)列,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,則公比SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】C【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.故選:C例題2.(2022·江蘇省響水中學(xué)高二期中)正項(xiàng)等比數(shù)列SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項(xiàng),若SKIPIF1<0,則SKIPIF1<0(
)A.4 B.8 C.32 D.64【答案】D【詳解】由題意可知,SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等差中項(xiàng),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0或SKIPIF1<0(舍),所以SKIPIF1<0,SKIPIF1<0,故選:D.例題3.(2022·全國(guó)·高三專題練習(xí))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)利為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,1成等比數(shù)列,且SKIPIF1<0,則SKIPIF1<0的公差SKIPIF1<0的取值范圍為_(kāi)_____.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,1成等比數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的公差SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.例題4.(2022·全國(guó)·高三專題練習(xí)(文))已知正項(xiàng)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0成等比數(shù)列,則等差數(shù)列的通項(xiàng)公式SKIPIF1<0________.【答案】SKIPIF1<0【詳解】等差數(shù)列SKIPIF1<0中SKIPIF1<0,設(shè)公差為d,SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),∴SKIPIF1<0.故答案為:SKIPIF1<0【提分秘籍】等差中項(xiàng)由三個(gè)數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0組成的等差數(shù)列可以看成是最簡(jiǎn)單的等差數(shù)列.這時(shí),SKIPIF1<0叫做SKIPIF1<0與SKIPIF1<0的等差中項(xiàng).這三個(gè)數(shù)滿足關(guān)系式SKIPIF1<0.等比中項(xiàng)如果SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,那么SKIPIF1<0叫做SKIPIF1<0與SKIPIF1<0的等比中項(xiàng).即:SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項(xiàng)?SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列?SKIPIF1<0【變式演練】1.(2022·江西·上高二中模擬預(yù)測(cè)(理))已知等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,則SKIPIF1<0(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】C【詳解】解:設(shè)等比數(shù)列公比為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列可得,SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<02;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故選:C.2.(2022·安徽省宿州市第二中學(xué)高二期末)已知數(shù)列SKIPIF1<0為等差數(shù)列,且SKIPIF1<0,3,SKIPIF1<0成等比數(shù)列,則SKIPIF1<0為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】設(shè)數(shù)列SKIPIF1<0的公差為SKIPIF1<0,因?yàn)镾KIPIF1<0,3,SKIPIF1<0成等比數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0+SKIPIF1<0,所以SKIPIF1<0,故選:A.3.(2022·吉林·遼源市第五中學(xué)校高二階段練習(xí))已知SKIPIF1<0,若3是SKIPIF1<0與SKIPIF1<0的等比中項(xiàng),則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.7 C.SKIPIF1<0 D.9【答案】A【詳解】由題意得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立.故SKIPIF1<0的最小值為SKIPIF1<0.故選:A4.(2022·全國(guó)·高三專題練習(xí))已知在正項(xiàng)等比數(shù)列SKIPIF1<0中SKIPIF1<0成等差數(shù)列,則SKIPIF1<0__________.【答案】9【詳解】設(shè)正項(xiàng)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0成等差數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0或SKIPIF1<0(不符合題意,舍去).所以SKIPIF1<0,故答案為:9.題型二:等差(等比)數(shù)列下角標(biāo)和性質(zhì)【典例分析】例題1.(2022·河北·衡水市第二中學(xué)高二期中)已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.2 B.3 C.4 D.6【答案】A【詳解】解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:A例題2.(2022·吉林·長(zhǎng)春市第二中學(xué)高二階段練習(xí))已知正項(xiàng)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為(
)A.3 B.14 C.28 D.42【答案】D【詳解】解:正項(xiàng)等差數(shù)列SKIPIF1<0,則SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍)則SKIPIF1<0.故選:D.例題3.(2022·浙江·慈溪中學(xué)高二階段練習(xí))記正項(xiàng)遞增等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0__________.【答案】63【詳解】SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0例題4.(2022·黑龍江·鐵人中學(xué)高二開(kāi)學(xué)考試)設(shè)函數(shù)SKIPIF1<0,若正項(xiàng)等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0##SKIPIF1<0【詳解】解:由SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0正項(xiàng)等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,根據(jù)等比數(shù)列的性質(zhì)得到:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,根據(jù)SKIPIF1<0得SKIPIF1<0.故答案為:SKIPIF1<0.【提分秘籍】①SKIPIF1<0SKIPIF1<0,則SKIPIF1<0(特別的,當(dāng)SKIPIF1<0,有SKIPIF1<0)②若SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0.特別地,若SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0.【變式演練】1.(2022·黑龍江·哈師大青岡實(shí)驗(yàn)中學(xué)高三階段練習(xí))設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0則SKIPIF1<0(
)A.150 B.120 C.75 D.60【答案】D【詳解】由等差數(shù)列的性質(zhì)可知SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故選:D2.(2022·黑龍江·大慶實(shí)驗(yàn)中學(xué)模擬預(yù)測(cè)(理))正項(xiàng)等比數(shù)列SKIPIF1<0中的項(xiàng)SKIPIF1<0,SKIPIF1<0是函數(shù)SKIPIF1<0的極值點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】C【詳解】依題意SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的兩個(gè)根,∴SKIPIF1<0,又SKIPIF1<0是正項(xiàng)等比數(shù)列,所以SKIPIF1<0,∴SKIPIF1<0,故選:C3.(2022·遼寧·沈陽(yáng)市第一二〇中學(xué)高二階段練習(xí))在等比數(shù)列SKIPIF1<0中,SKIPIF1<0,函數(shù)SKIPIF1<0,則SKIPIF1<0等于(
)A.36 B.34 C.38 D.212【答案】B【詳解】解:令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,因?yàn)樵诘缺葦?shù)列SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0故選:B4.(2022·全國(guó)·高二單元測(cè)試)正項(xiàng)遞增等比數(shù)列SKIPIF1<0,前n項(xiàng)的和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=__.【答案】364【解答】設(shè)每一項(xiàng)都是正數(shù)的遞增的等比數(shù)列SKIPIF1<0的公比為q>1,由SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.所以3q2=27,解得q=3,則SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0364.故答案為:364.5.(2022·吉林遼源·高二期末)已知數(shù)列SKIPIF1<0是等差數(shù)列,數(shù)列SKIPIF1<0是等比數(shù)列,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0##0.5【詳解】由題意得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0題型三:等差(等比)數(shù)列單調(diào)性問(wèn)題【典例分析】例題1.(2022·北京交通大學(xué)附屬中學(xué)高二期中)已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則下列說(shuō)法中正確的是(
)A.SKIPIF1<0為遞增數(shù)列 B.當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值C.不等式SKIPIF1<0的解集為SKIPIF1<0 D.不等式SKIPIF1<0的解集為無(wú)限集【答案】C【詳解】由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0;設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,對(duì)于A,SKIPIF1<0,SKIPIF1<0為遞減數(shù)列,A錯(cuò)誤;對(duì)于B,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取得最大值,B錯(cuò)誤;對(duì)于C,由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,C正確;對(duì)于D,SKIPIF1<0,SKIPIF1<0由SKIPIF1<0得:SKIPIF1<0,則不等式SKIPIF1<0的解集為SKIPIF1<0,為有限集,D錯(cuò)誤.故選:C.例題2.(2022·浙江·金華市外國(guó)語(yǔ)學(xué)校高二開(kāi)學(xué)考試)已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,下列結(jié)論正確的是(
)A.?dāng)?shù)列SKIPIF1<0是遞增數(shù)列 B.SKIPIF1<0C.當(dāng)SKIPIF1<0取得最大值時(shí),SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,所以數(shù)列是遞減數(shù)列,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值.故B正確,AC錯(cuò)誤.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故D錯(cuò)誤.故選:B.例題3.(多選)(2022·河南·高三階段練習(xí)(理))各項(xiàng)均為正數(shù)的等比數(shù)列SKIPIF1<0的前n項(xiàng)積為SKIPIF1<0,若SKIPIF1<0,公比SKIPIF1<0,則下列命題錯(cuò)誤的是(
)A.若SKIPIF1<0,則必有SKIPIF1<0 B.若SKIPIF1<0,則必有SKIPIF1<0是SKIPIF1<0中最大的項(xiàng)C.若SKIPIF1<0,則必有SKIPIF1<0 D.若SKIPIF1<0,則必有SKIPIF1<0【答案】AD【詳解】對(duì)于A,若SKIPIF1<0,則SKIPIF1<0,即有SKIPIF1<0,根據(jù)等比數(shù)列的性質(zhì),則SKIPIF1<0,即有SKIPIF1<0,A正確;對(duì)于B,若SKIPIF1<0,則等比數(shù)列SKIPIF1<0單調(diào)遞減,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0中最大的項(xiàng);若SKIPIF1<0,則等比數(shù)列SKIPIF1<0單調(diào)遞增,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0是SKIPIF1<0中最小的項(xiàng),B錯(cuò)誤;對(duì)于C,若SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,所以數(shù)列SKIPIF1<0單調(diào)遞減,若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,C錯(cuò)誤;對(duì)于D,SKIPIF1<0,而SKIPIF1<0,所以數(shù)列SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,D正確.故選:AD例題4.(2022·全國(guó)·高三專題練習(xí))已知等差數(shù)列SKIPIF1<0是遞增數(shù)列,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為_(kāi)__________.【答案】SKIPIF1<0【詳解】∵等差數(shù)列SKIPIF1<0是遞增數(shù)列,且SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0,故答案為SKIPIF1<0.5.(2022·江蘇南通·高三期中)試寫出一個(gè)無(wú)窮等比數(shù)列SKIPIF1<0,同時(shí)滿足①SKIPIF1<0;②數(shù)列SKIPIF1<0單調(diào)遞減;③數(shù)列SKIPIF1<0不具有單調(diào)性,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0__________.【答案】SKIPIF1<0(答案不唯一)【詳解】設(shè)SKIPIF1<0,由SKIPIF1<0得,SKIPIF1<0,∵數(shù)列SKIPIF1<0不具有單調(diào)性,∴SKIPIF1<0,又∵數(shù)列SKIPIF1<0單調(diào)遞減,故SKIPIF1<0,綜上,SKIPIF1<0,不妨取SKIPIF1<0,則SKIPIF1<0.經(jīng)檢驗(yàn)符合題意.故答案為:SKIPIF1<0.【提分秘籍】若數(shù)列SKIPIF1<0滿足對(duì)一切正整數(shù)SKIPIF1<0,都有SKIPIF1<0(或者SKIPIF1<0),則稱數(shù)列SKIPIF1<0為遞增數(shù)列(遞減數(shù)列);等差數(shù)列的單調(diào)性①當(dāng)SKIPIF1<0,等差數(shù)列SKIPIF1<0為遞增數(shù)列②當(dāng)SKIPIF1<0,等差數(shù)列SKIPIF1<0為遞減數(shù)列③當(dāng)SKIPIF1<0,等差數(shù)列SKIPIF1<0為常數(shù)列等比數(shù)列的單調(diào)性已知等比數(shù)列SKIPIF1<0的首項(xiàng)為SKIPIF1<0,公比為SKIPIF1<0(1)當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),等比數(shù)列SKIPIF1<0為遞增數(shù)列;(2)當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),等比數(shù)列SKIPIF1<0為遞減數(shù)列;(3)當(dāng)SKIPIF1<0時(shí),等比數(shù)列SKIPIF1<0為常數(shù)列(SKIPIF1<0)(4)當(dāng)SKIPIF1<0時(shí),等比數(shù)列SKIPIF1<0為擺動(dòng)數(shù)列.【變式演練】1.(2022·陜西·渭南市瑞泉中學(xué)高二階段練習(xí))設(shè)等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.32 B.16 C.128 D.64【答案】D【詳解】因?yàn)榈缺葦?shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,故SKIPIF1<0,則數(shù)列SKIPIF1<0是單調(diào)遞減數(shù)列,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0.故選:D.2.(2022·全國(guó)·高三專題練習(xí))已知等比數(shù)列SKIPIF1<0的公比為q,且SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0是遞增數(shù)列”的(
)A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【答案】B【詳解】當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,則數(shù)列SKIPIF1<0為遞減數(shù)列,當(dāng)SKIPIF1<0是遞增數(shù)列時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則可得SKIPIF1<0,所以“SKIPIF1<0”是“SKIPIF1<0是遞增數(shù)列”的必要不充分條件,故選:B3.(多選)(2022·江蘇·南京市天印高級(jí)中學(xué)高三期中)已知等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,前SKIPIF1<0項(xiàng)積為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則下列命題正確的是(
)A.SKIPIF1<0 B.當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故A正確;又SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故C正確;由SKIPIF1<0知等比數(shù)列SKIPIF1<0為遞減數(shù)列,且SKIPIF1<0,故SKIPIF1<0取得最大值為SKIPIF1<0,故B錯(cuò)誤;因?yàn)镾KIPIF1<0,SKIPIF1<0所以SKIPIF1<0成立,故D正確.故選:ACD4.(2022·全國(guó)·高三專題練習(xí))已知等差數(shù)列{SKIPIF1<0}的前n項(xiàng)和是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則數(shù)列{|SKIPIF1<0|}中值最小的項(xiàng)為第___項(xiàng).【答案】10【詳解】由題意得:SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故等差數(shù)列{SKIPIF1<0}為遞減數(shù)列,即公差為負(fù)數(shù),因此SKIPIF1<0的前9項(xiàng)依次遞減,從第10項(xiàng)開(kāi)始依次遞增,由于SKIPIF1<0,∴{|SKIPIF1<0|}最小的項(xiàng)是第10項(xiàng),故答案為:105.(2022·陜西·西安市雁塔區(qū)第二中學(xué)高一階段練習(xí))在等差數(shù)列SKIPIF1<0中,SKIPIF1<0,則使SKIPIF1<0成立的最大自然數(shù)n為_(kāi)______【答案】4042【詳解】由等差數(shù)列的性質(zhì)可得SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0異號(hào),又SKIPIF1<0,所以等差數(shù)列SKIPIF1<0必為遞減數(shù)列,SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,使SKIPIF1<0成立的最大自然數(shù)n為4042.故答案為:4042.題型四:等差(等比)數(shù)列中最大(?。╉?xiàng)【典例分析】例題1.(2022·陜西·虢鎮(zhèn)中學(xué)高二階段練習(xí))設(shè)SKIPIF1<0,則當(dāng)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和取得最小值時(shí),SKIPIF1<0的值為(
)A.4 B.5C.4或5 D.5或6【答案】A【詳解】由SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0.故選:A.例題2.(2022·全國(guó)·高三專題練習(xí))已知等差數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0最大.則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0___________.【答案】SKIPIF1<0【詳解】解:由題意可知,SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),故SKIPIF1<0故答案為:20.例題3.(2022·福建省寧德第一中學(xué)高二階段練習(xí))已知首項(xiàng)為4的數(shù)列SKIPIF1<0滿足SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0是等差數(shù)列.(2)求數(shù)列SKIPIF1<0的通項(xiàng)公式,并求數(shù)列SKIPIF1<0的最小項(xiàng).【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0;最小項(xiàng)為SKIPIF1<0.(1)解:因?yàn)閿?shù)列SKIPIF1<0滿足SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,又因?yàn)镾KIPIF1<0,可得SKIPIF1<0,所以數(shù)列SKIPIF1<0表示首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列.(2)解:數(shù)列SKIPIF1<0表示首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,可得SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0為遞增數(shù)列,所以當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0的最小項(xiàng)為SKIPIF1<0,即數(shù)列SKIPIF1<0的最小項(xiàng)為SKIPIF1<0.【提分秘籍】①求數(shù)列SKIPIF1<0中最大項(xiàng)方法:當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0是數(shù)列最大項(xiàng);②求數(shù)列SKIPIF1<0中最小項(xiàng)方法:當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0是數(shù)列最小項(xiàng);③利用單調(diào)性求解【變式演練】1.(2022·全國(guó)·高三專題練習(xí))已知SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且SKIPIF1<0,SKIPIF1<0,則當(dāng)SKIPIF1<0取最大值時(shí),SKIPIF1<0的值為_(kāi)__________.【答案】7【詳解】方法一:設(shè)數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則由題意得SKIPIF1<0,解得SKIPIF1<0則SKIPIF1<0.又SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值.方法二:設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,即數(shù)列SKIPIF1<0的前7項(xiàng)為正數(shù),從第8項(xiàng)起各項(xiàng)均為負(fù)數(shù),故當(dāng)SKIPIF1<0取得最大值時(shí),SKIPIF1<0.故答案為:7.2.(2022·全國(guó)·高二期末)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0(1)證明:SKIPIF1<0是等比數(shù)列;(2)求數(shù)列SKIPIF1<0的通項(xiàng)公式(3)求數(shù)列SKIPIF1<0的通項(xiàng)公式,并求出SKIPIF1<0為何值時(shí),SKIPIF1<0取得最小值,并說(shuō)明理由.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0;(3)SKIPIF1<0,理由見(jiàn)解析.(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是以-15為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列;(2)由(1)知,SKIPIF1<0是以-15為首項(xiàng),SKIPIF1<0為公比的等比數(shù)列,得SKIPIF1<0,所以SKIPIF1<0,(3)由(2)得SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,同理當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;故SKIPIF1<0時(shí),SKIPIF1<0取得最小值,即SKIPIF1<0為最小值.3.(2022·河南·高三階段練習(xí)(理))已知數(shù)列SKIPIF1<0對(duì)任意SKIPIF1<0滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求使得SKIPIF1<0成立的正整數(shù)SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0;(2)7.【詳解】(1)因?yàn)镾KIPIF1<0①,所以SKIPIF1<0SKIPIF1<0②,①②兩式相減,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0③.又當(dāng)SKIPIF1<0時(shí),得SKIPIF1<0,不滿足上式.所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由(1)知,SKIPIF1<0,所以SKIPIF1<0不成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0為增函數(shù),又SKIPIF1<0.因此要使SKIPIF1<0成立,只需SKIPIF1<0,故使SKIPIF1<0成立的正整數(shù)SKIPIF1<0的最小值為7.題型五:等差(等比)數(shù)列奇偶項(xiàng)問(wèn)題【典例分析】例題1.(2022·上?!の挥袑W(xué)高二期末)設(shè)等差數(shù)列的項(xiàng)數(shù)SKIPIF1<0為奇數(shù),則其奇數(shù)項(xiàng)之和與偶數(shù)項(xiàng)之和的比為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由題知,奇數(shù)項(xiàng)有SKIPIF1<0項(xiàng),偶數(shù)項(xiàng)有SKIPIF1<0項(xiàng),奇數(shù)項(xiàng)之和為SKIPIF1<0,偶數(shù)項(xiàng)之和為SKIPIF1<0,所以奇數(shù)項(xiàng)之和與偶數(shù)項(xiàng)之和的比為SKIPIF1<0,故選:D例題2.(2022·全國(guó)·高二)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,則數(shù)列SKIPIF1<0的前10項(xiàng)中所有奇數(shù)項(xiàng)之和與所有偶數(shù)項(xiàng)之和的比為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0,即前10項(xiàng)分別為SKIPIF1<0,所以數(shù)列SKIPIF1<0的前10項(xiàng)中SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故選:C.例題3.(2022·全國(guó)·高三專題練習(xí))已知正項(xiàng)等比數(shù)列SKIPIF1<0共有SKIPIF1<0項(xiàng),它的所有項(xiàng)的和是奇數(shù)項(xiàng)的和的SKIPIF1<0倍,則公比SKIPIF1<0______.【答案】SKIPIF1<0【詳解】設(shè)等比數(shù)列SKIPIF1<0的奇數(shù)項(xiàng)之和為SKIPIF1<0,偶數(shù)項(xiàng)之和為SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.例題4.(2022·江蘇·高二課時(shí)練習(xí))已知等差數(shù)列SKIPIF1<0中,前SKIPIF1<0(SKIPIF1<0為奇數(shù))項(xiàng)的和為77,其中偶數(shù)項(xiàng)之和為33,且SKIPIF1<0,求通項(xiàng)公式.【答案】SKIPIF1<0【詳解】∵等差數(shù)列SKIPIF1<0中,前m(m為奇數(shù))項(xiàng)的和為77,∴SKIPIF1<0,①∵其中偶數(shù)項(xiàng)之和為33,由題意可得偶數(shù)項(xiàng)共有SKIPIF1<0項(xiàng),公差等于SKIPIF1<0,SKIPIF1<0SKIPIF1<0+SKIPIF1<0×SKIPIF1<0=33,②∵SKIPIF1<0,∴SKIPIF1<0,③由①②③,解得SKIPIF1<0,故SKIPIF1<0.?dāng)?shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.【變式演練】1.(2022·全國(guó)·高三專題練習(xí))等比數(shù)列的首項(xiàng)為1,項(xiàng)數(shù)是偶數(shù),所有得奇數(shù)項(xiàng)之和為85,所有的偶數(shù)項(xiàng)之和為170,則這個(gè)等比數(shù)列的項(xiàng)數(shù)為(
)A.4 B.6 C.8 D.10【答案】C【詳解】設(shè)等比數(shù)列項(xiàng)數(shù)為2n項(xiàng),所有奇數(shù)項(xiàng)之和為SKIPIF1<0,所有偶數(shù)項(xiàng)之和為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,結(jié)合等比數(shù)列求和公式有:SKIPIF1<0,解得n=4,即這個(gè)等比數(shù)列的項(xiàng)數(shù)為8.本題選擇C選項(xiàng).2.(2022·上海南匯中學(xué)高二期末)在等差數(shù)列SKIPIF1<0中,已知公差SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0__________.【答案】145【詳解】等差數(shù)列SKIPIF1<0中,已知公差SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故答案為:145.3.(2022·全國(guó)·高三專題練習(xí))若數(shù)列SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0,SKIPIF1<0是不等于SKIPIF1<0的常數(shù))對(duì)任意SKIPIF1<0恒成立,則稱SKIPIF1<0是周期為SKIPIF1<0,周期公差為SKIPIF1<0的“類周期等差數(shù)列”.已知在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0是周期為SKIPIF1<0的“類周期等差數(shù)列”,并求SKIPIF1<0的值;(2)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,求SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)證明見(jiàn)解析;SKIPIF1<0;SKIPIF1<0(2)SKIPIF1<0(1)由SKIPIF1<0,SKIPIF1<0,相減得SKIPIF1<0,所以SKIPIF1<0周期為SKIPIF1<0,周期公差為SKIPIF1<0的“類周期等差數(shù)列”,由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.(2)由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0.綜上所述,SKIPIF1<04.(2022·江蘇·高二課時(shí)練習(xí))一個(gè)等差數(shù)列的前12項(xiàng)和為354,前12項(xiàng)中,偶數(shù)項(xiàng)的和與奇數(shù)項(xiàng)的和之比為32∶27,求公差d.【答案】SKIPIF1<0【詳解】解:設(shè)首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0,則由題意可得SKIPIF1<0,解得SKIPIF1<0又SKIPIF1<0,SKIPIF1<0.5.(2022·江蘇·高二課時(shí)練習(xí))設(shè)等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0.已知SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0;(2)求SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)SKIPIF1<0等差數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0,解可得,SKIPIF1<0,且在等差數(shù)列SKIPIF1<0中,奇數(shù)項(xiàng)仍成等差,公差為SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0等差數(shù)列SKIPIF1<0中,SKIPIF1<0的相鄰兩項(xiàng)差為SKIPIF1<0所以SKIPIF1<0.題型六:等差(等比)數(shù)列片段和性質(zhì)【典例分析】例題1.(2022·全國(guó)·高二課時(shí)練習(xí))等差數(shù)列SKIPIF1<0中其前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0則SKIPIF1<0為.A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由等差數(shù)列前SKIPIF1<0項(xiàng)和性質(zhì)可知:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列又SKIPIF1<0,SKIPIF1<0
SKIPIF1<0SKIPIF1<0本題正確選項(xiàng):SKIPIF1<0例題2.(2022·全國(guó)·高二單元測(cè)試)設(shè)等比數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】根據(jù)等比數(shù)列性質(zhì):SKIPIF1<0成等比數(shù)列SKIPIF1<0,設(shè)SKIPIF1<0則SKIPIF1<0,SKIPIF1<0SKIPIF1<0;SKIPIF1<0SKIPIF1<0故選C例題3.(多選)(2022·全國(guó)·高二課時(shí)練習(xí))關(guān)于等差數(shù)列和等比數(shù)列,下列四個(gè)選項(xiàng)中正確的有(
)A.若數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0(SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為常數(shù)),則數(shù)列SKIPIF1<0為等差數(shù)列B.若數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,則數(shù)列SKIPIF1<0為等比數(shù)列C.?dāng)?shù)列SKIPIF1<0是等差數(shù)列,SKIPIF1<0為前SKIPIF1<0項(xiàng)和,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…仍為等差數(shù)列D.?dāng)?shù)列SKIPIF1<0是等比數(shù)列,SKIPIF1<0為前SKIPIF1<0項(xiàng)和,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…仍為等比數(shù)列【答案】BC【詳解】根據(jù)題意,依次分析選項(xiàng):對(duì)于選項(xiàng)A:因?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以只有當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0成等差數(shù)列,故A錯(cuò)誤;對(duì)于選項(xiàng)B:因?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,符合上式,所以SKIPIF1<0,則數(shù)列SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度數(shù)據(jù)中心服務(wù)器租賃合同
- 2024醫(yī)院病房清潔服務(wù)合同
- 2024年展覽保險(xiǎn)服務(wù)協(xié)議
- 2024年度0kv線路工程建設(shè)的合作開(kāi)發(fā)合同
- 2024年度婚禮主持委托合同
- 2024年定制版太陽(yáng)能系統(tǒng)維護(hù)合同
- 2024年度太陽(yáng)能熱水系統(tǒng)安裝合同
- 2024年度城市供水供電供氣合同
- 2024年三人股東責(zé)任承擔(dān)協(xié)議
- 04版建筑工程合同
- GDX2包裝機(jī)組工藝流程簡(jiǎn)介
- 個(gè)人獨(dú)資企業(yè)有限公司章程(模板)
- 小學(xué)生安全用電知識(shí)(課堂PPT)
- 裝飾自己的名字說(shuō)課稿
- 人教版(PEP)四年級(jí)上冊(cè)英語(yǔ)unit 1 My classroom圖文完美版(課堂PPT)
- 幼小銜接中存在的問(wèn)題及對(duì)策
- 中級(jí)漢語(yǔ)期末考試測(cè)試題(共5頁(yè))
- 《國(guó)家電網(wǎng)公司安全生產(chǎn)事故隱患排查治理管理辦法》(國(guó)家電網(wǎng)安監(jiān)[
- 水保監(jiān)理報(bào)告范文
- xx售樓部鋼結(jié)構(gòu)及玻璃幕墻工程拆除施工方案
- 云南沿邊高校青年教師發(fā)展現(xiàn)狀及問(wèn)題分析
評(píng)論
0/150
提交評(píng)論