江蘇省南通市通州區(qū)重點(diǎn)中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試題含解析_第1頁(yè)
江蘇省南通市通州區(qū)重點(diǎn)中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試題含解析_第2頁(yè)
江蘇省南通市通州區(qū)重點(diǎn)中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試題含解析_第3頁(yè)
江蘇省南通市通州區(qū)重點(diǎn)中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試題含解析_第4頁(yè)
江蘇省南通市通州區(qū)重點(diǎn)中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省南通市通州區(qū)重點(diǎn)中學(xué)2024屆中考聯(lián)考數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,剪兩張對(duì)邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°2.已知關(guān)于x的不等式組﹣1<2x+b<1的解滿足0<x<2,則b滿足的條件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣33.下列各組數(shù)中,互為相反數(shù)的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|4.如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC上,BD=3,DC=1,點(diǎn)P是AB上的動(dòng)點(diǎn),則PC+PD的最小值為()A.4 B.5 C.6 D.75.如圖,在半徑為5的⊙O中,弦AB=6,點(diǎn)C是優(yōu)弧上一點(diǎn)(不與A,B重合),則cosC的值為()A. B. C. D.6.下列各式中,不是多項(xiàng)式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)7.對(duì)于非零的兩個(gè)實(shí)數(shù)、,規(guī)定,若,則的值為()A. B. C. D.8.甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時(shí)的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時(shí)的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時(shí)后勻速前往B地,比甲車早30分鐘到達(dá).到達(dá)B地后,乙車按原速度返回A地,甲車以2a千米/時(shí)的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開A地的時(shí)間為t(小時(shí)),s與t之間的函數(shù)圖象如圖所示.下列說法:①a=40;②甲車維修所用時(shí)間為1小時(shí);③兩車在途中第二次相遇時(shí)t的值為5.25;④當(dāng)t=3時(shí),兩車相距40千米,其中不正確的個(gè)數(shù)為()A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)9.在娛樂節(jié)目“墻來(lái)了!”中,參賽選手背靠水池,迎面沖來(lái)一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢(shì),才能穿墻而過,否則會(huì)被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個(gè)不同形狀的“姿勢(shì)”分別穿過這兩個(gè)空洞,則該幾何體為()A. B. C. D.10.如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(-4,m),B(-1,n),平移后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是()A. B. C. D.11.甲、乙、丙、丁四名射擊運(yùn)動(dòng)員進(jìn)行淘汰賽,在相同條件下,每人射擊10次,甲、乙兩人的成績(jī)?nèi)鐖D所示,丙、丁二人的成績(jī)?nèi)绫硭荆蕴幻\(yùn)動(dòng)員,從平均數(shù)和方差兩個(gè)因素分析,應(yīng)淘汰()丙丁平均數(shù)88方差1.21.8A.甲 B.乙 C.丙 D.丁12.甲隊(duì)修路120m與乙隊(duì)修路100m所用天數(shù)相同,已知甲隊(duì)比乙隊(duì)每天多修10m,設(shè)甲隊(duì)每天修路xm.依題意,下面所列方程正確的是A.B. C.D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知線段a=4,b=1,如果線段c是線段a、b的比例中項(xiàng),那么c=_____.14.在平面直角坐標(biāo)系xOy中,位于第一象限內(nèi)的點(diǎn)A(1,2)在x軸上的正投影為點(diǎn)A′,則cos∠AOA′=__.15.我國(guó)自主研發(fā)的某型號(hào)手機(jī)處理器采用10nm工藝,已知1nm=0.000000001m,則10nm用科學(xué)記數(shù)法可表示為_____m.16.如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠P=______°.17.如圖,P是⊙O的直徑AB延長(zhǎng)線上一點(diǎn),PC切⊙O于點(diǎn)C,PC=6,BC:AC=1:2,則AB的長(zhǎng)為_____.18.如圖,以點(diǎn)為圓心的兩個(gè)同心圓中,大圓的弦是小圓的切線,點(diǎn)是切點(diǎn),則劣弧AB的長(zhǎng)為.(結(jié)果保留)三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,D是AB邊上任意一點(diǎn),E是BC邊中點(diǎn),過點(diǎn)C作AB的平行線,交DE的延長(zhǎng)線于點(diǎn)F,連接BF,CD.(1)求證:四邊形CDBF是平行四邊形;(2)若∠FDB=30°,∠ABC=45°,BC=4,求DF的長(zhǎng).20.(6分)(1)如圖1,在矩形ABCD中,點(diǎn)O在邊AB上,∠AOC=∠BOD,求證:AO=OB;(2)如圖2,AB是⊙O的直徑,PA與⊙O相切于點(diǎn)A,OP與⊙O相交于點(diǎn)C,連接CB,∠OPA=40°,求∠ABC的度數(shù).21.(6分)數(shù)學(xué)不僅是一門學(xué)科,也是一種文化,即數(shù)學(xué)文化.數(shù)學(xué)文化包括數(shù)學(xué)史、數(shù)學(xué)美和數(shù)學(xué)應(yīng)用等多方面.古時(shí)候,在某個(gè)王國(guó)里有一位聰明的大臣,他發(fā)明了國(guó)際象棋,獻(xiàn)給了國(guó)王,國(guó)王從此迷上了下棋,為了對(duì)聰明的大臣表示感謝,國(guó)王答應(yīng)滿足這位大臣的一個(gè)要求.大臣說:“就在這個(gè)棋盤上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、?!ぁぁぁぁぁひ恢坏降诟?”“你真傻!就要這么一點(diǎn)米粒?”國(guó)王哈哈大笑.大臣說:“就怕您的國(guó)庫(kù)里沒有這么多米!”國(guó)王的國(guó)庫(kù)里真沒有這么多米嗎?題中問題就是求是多少?請(qǐng)同學(xué)們閱讀以下解答過程就知道答案了.設(shè),則即:事實(shí)上,按照這位大臣的要求,放滿一個(gè)棋盤上的個(gè)格子需要粒米.那么到底多大呢?借助計(jì)算機(jī)中的計(jì)算器進(jìn)行計(jì)算,可知答案是一個(gè)位數(shù):,這是一個(gè)非常大的數(shù),所以國(guó)王是不能滿足大臣的要求.請(qǐng)用你學(xué)到的方法解決以下問題:我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?計(jì)算:某中學(xué)“數(shù)學(xué)社團(tuán)”開發(fā)了一款應(yīng)用軟件,推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng).這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知一列數(shù):,其中第一項(xiàng)是,接下來(lái)的兩項(xiàng)是,再接下來(lái)的三項(xiàng)是,以此類推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項(xiàng)和為的正整數(shù)冪.請(qǐng)直接寫出所有滿足條件的軟件激活碼正整數(shù)的值.22.(8分)某同學(xué)用兩個(gè)完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動(dòng),將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設(shè)AD=x(0≤x≤4),兩個(gè)直角三角形紙片重疊部分的面積為y,試求出y與x的函數(shù)關(guān)系式;(2)在運(yùn)動(dòng)過程中,四邊形CDBF能否為正方形,若能,請(qǐng)指出此時(shí)點(diǎn)D的位置,并說明理由;若不能,請(qǐng)你添加一個(gè)條件,并說明四邊形CDBF為正方形?23.(8分)正方形ABCD中,點(diǎn)P為直線AB上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),連接DP,將DP繞點(diǎn)P旋轉(zhuǎn)90°得到EP,連接DE,過點(diǎn)E作CD的垂線,交射線DC于M,交射線AB于N.問題出現(xiàn):(1)當(dāng)點(diǎn)P在線段AB上時(shí),如圖1,線段AD,AP,DM之間的數(shù)量關(guān)系為;題探究:(2)①當(dāng)點(diǎn)P在線段BA的延長(zhǎng)線上時(shí),如圖2,線段AD,AP,DM之間的數(shù)量關(guān)系為;②當(dāng)點(diǎn)P在線段AB的延長(zhǎng)線上時(shí),如圖3,請(qǐng)寫出線段AD,AP,DM之間的數(shù)量關(guān)系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.24.(10分)今年,我國(guó)海關(guān)總署嚴(yán)厲打擊“洋垃圾”違法行動(dòng),堅(jiān)決把“洋垃圾”拒于國(guó)門之外.如圖,某天我國(guó)一艘海監(jiān)船巡航到A港口正西方的B處時(shí),發(fā)現(xiàn)在B的北偏東60°方向,相距150海里處的C點(diǎn)有一可疑船只正沿CA方向行駛,C點(diǎn)在A港口的北偏東30°方向上,海監(jiān)船向A港口發(fā)出指令,執(zhí)法船立即從A港口沿AC方向駛出,在D處成功攔截可疑船只,此時(shí)D點(diǎn)與B點(diǎn)的距離為75海里.(1)求B點(diǎn)到直線CA的距離;(2)執(zhí)法船從A到D航行了多少海里?(結(jié)果保留根號(hào))25.(10分)某市為了解本地七年級(jí)學(xué)生寒假期間參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽查了部分七年級(jí)學(xué)生寒假參加社會(huì)實(shí)踐活動(dòng)的天數(shù)(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)以上的信息,回答下列問題:(1)補(bǔ)全扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖;(2)所抽查學(xué)生參加社會(huì)實(shí)踐活動(dòng)天數(shù)的眾數(shù)是(選填:A、B、C、D、E);(3)若該市七年級(jí)約有2000名學(xué)生,請(qǐng)你估計(jì)參加社會(huì)實(shí)踐“活動(dòng)天數(shù)不少于7天”的學(xué)生大約有多少人?26.(12分)當(dāng)前,“精準(zhǔn)扶貧”工作已進(jìn)入攻堅(jiān)階段,凡貧困家庭均要“建檔立卡”.某初級(jí)中學(xué)七年級(jí)共有四個(gè)班,已“建檔立卡”的貧困家庭的學(xué)生人數(shù)按一、二、三、四班分別記為A1,A2,A3,A4,現(xiàn)對(duì)A1,A2,A3,A4統(tǒng)計(jì)后,制成如圖所示的統(tǒng)計(jì)圖.(1)求七年級(jí)已“建檔立卡”的貧困家庭的學(xué)生總?cè)藬?shù);(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并求出A1所在扇形的圓心角的度數(shù);(3)現(xiàn)從A1,A2中各選出一人進(jìn)行座談,若A1中有一名女生,A2中有兩名女生,請(qǐng)用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.27.(12分)校園空地上有一面墻,長(zhǎng)度為20m,用長(zhǎng)為32m的籬笆和這面墻圍成一個(gè)矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請(qǐng)舉例說明;若不能,請(qǐng)說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達(dá)到170m2嗎?請(qǐng)說明理由.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解題分析】

首先可判斷重疊部分為平行四邊形,且兩條紙條寬度相同;再由平行四邊形的等積轉(zhuǎn)換可得鄰邊相等,則四邊形為菱形.所以根據(jù)菱形的性質(zhì)進(jìn)行判斷.【題目詳解】解:四邊形是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,,,四邊形是平行四邊形(對(duì)邊相互平行的四邊形是平行四邊形);過點(diǎn)分別作,邊上的高為,.則(兩紙條相同,紙條寬度相同);平行四邊形中,,即,,即.故正確;平行四邊形為菱形(鄰邊相等的平行四邊形是菱形).,(菱形的對(duì)角相等),故正確;,(平行四邊形的對(duì)邊相等),故正確;如果四邊形是矩形時(shí),該等式成立.故不一定正確.故選:.【題目點(diǎn)撥】本題考查了菱形的判定與性質(zhì).注意:“鄰邊相等的平行四邊形是菱形”,而非“鄰邊相等的四邊形是菱形”.2、C【解題分析】

根據(jù)不等式的性質(zhì)得出x的解集,進(jìn)而解答即可.【題目詳解】∵-1<2x+b<1∴,∵關(guān)于x的不等式組-1<2x+b<1的解滿足0<x<2,∴,解得:-3≤b≤-1,故選C.【題目點(diǎn)撥】此題考查解一元一次不等式組,關(guān)鍵是根據(jù)不等式的性質(zhì)得出x的解集.3、A【解題分析】

根據(jù)相反數(shù)的定義,對(duì)每個(gè)選項(xiàng)進(jìn)行判斷即可.【題目詳解】解:A、(﹣1)2=1,1與﹣1互為相反數(shù),正確;B、(﹣1)2=1,故錯(cuò)誤;C、2與互為倒數(shù),故錯(cuò)誤;D、2=|﹣2|,故錯(cuò)誤;故選:A.【題目點(diǎn)撥】本題考查了相反數(shù)的定義,解題的關(guān)鍵是掌握相反數(shù)的定義.4、B【解題分析】試題解析:過點(diǎn)C作CO⊥AB于O,延長(zhǎng)CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP.此時(shí)DP+CP=DP+PC′=DC′的值最?。逥C=1,BC=4,∴BD=3,連接BC′,由對(duì)稱性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根據(jù)勾股定理可得DC′===1.故選B.5、D【解題分析】解:作直徑AD,連結(jié)BD,如圖.∵AD為直徑,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故選D.點(diǎn)睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.也考查了解直角三角形.6、D【解題分析】

原式分解因式,判斷即可.【題目詳解】原式=2(x2﹣2x+1)=2(x﹣1)2。故選:D.【題目點(diǎn)撥】考查了提公因式法與公式法的綜合運(yùn)用,熟練掌握因式分解的方法是解本題的關(guān)鍵.7、D【解題分析】試題分析:因?yàn)橐?guī)定,所以,所以x=,經(jīng)檢驗(yàn)x=是分式方程的解,故選D.考點(diǎn):1.新運(yùn)算;2.分式方程.8、A【解題分析】解:①由函數(shù)圖象,得a=120÷3=40,故①正確,②由題意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲車維修的時(shí)間為1小時(shí);故②正確,③如圖:∵甲車維修的時(shí)間是1小時(shí),∴B(4,120).∵乙在甲出發(fā)2小時(shí)后勻速前往B地,比甲早30分鐘到達(dá).∴E(5,240).∴乙行駛的速度為:240÷3=80,∴乙返回的時(shí)間為:240÷80=3,∴F(8,0).設(shè)BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,當(dāng)y1=y2時(shí),80t﹣200=﹣80t+640,t=5.2.∴兩車在途中第二次相遇時(shí)t的值為5.2小時(shí),故弄③正確,④當(dāng)t=3時(shí),甲車行的路程為:120km,乙車行的路程為:80×(3﹣2)=80km,∴兩車相距的路程為:120﹣80=40千米,故④正確,故選A.9、C【解題分析】試題分析:通過圖示可知,要想通過圓,則可以是圓柱、圓錐、球,而能通過三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C10、D【解題分析】分析:過A作AC∥x軸,交B′B的延長(zhǎng)線于點(diǎn)C,過A′作A′D∥x軸,交B′B的于點(diǎn)D,則C(-1,m),AC=-1-(-1)=3,根據(jù)平移的性質(zhì)以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長(zhǎng)線于點(diǎn)C,過A′作A′D∥x軸,交B′B的于點(diǎn)D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數(shù)的圖是將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個(gè)單位長(zhǎng)度得到的,∴新圖象的函數(shù)表達(dá)式是y=(x-2)2+1+3=(x-2)2+1.故選D.點(diǎn)睛:此題主要考查了二次函數(shù)圖象變換以及矩形的面積求法等知識(shí),根據(jù)已知得出AA′的長(zhǎng)度是解題關(guān)鍵.11、D【解題分析】

求出甲、乙的平均數(shù)、方差,再結(jié)合方差的意義即可判斷.【題目詳解】=(6+10+8+9+8+7+8+9+7+7)=8,=[(6-8)2+(10-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(8-8)2+(9-8)2+(7-8)2+(7-8)2]=×13=1.3;=(7+10+7+7+9+8+7+9+9+7)=8,=[(7-8)2+(10-8)2+(7-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(9-8)2+(7-8)2]=×12=1.2;丙的平均數(shù)為8,方差為1.2,丁的平均數(shù)為8,方差為1.8,故4個(gè)人的平均數(shù)相同,方差丁最大.故應(yīng)該淘汰丁.故選D.【題目點(diǎn)撥】本題考查方差、平均數(shù)、折線圖等知識(shí),解題的關(guān)鍵是記住平均數(shù)、方差的公式.12、A【解題分析】分析:甲隊(duì)每天修路xm,則乙隊(duì)每天修(x-10)m,因?yàn)榧?、乙兩?duì)所用的天數(shù)相同,所以,。故選A。二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解題分析】

根據(jù)比例中項(xiàng)的定義,列出比例式即可得出中項(xiàng),注意線段不能為負(fù).【題目詳解】根據(jù)比例中項(xiàng)的概念結(jié)合比例的基本性質(zhì),得:比例中項(xiàng)的平方等于兩條線段的乘積.則c1=4×1,c=±1,(線段是正數(shù),負(fù)值舍去),故c=1.故答案為1.【題目點(diǎn)撥】本題考查了比例線段;理解比例中項(xiàng)的概念,這里注意線段不能是負(fù)數(shù).14、.【解題分析】

依據(jù)點(diǎn)A(1,2)在x軸上的正投影為點(diǎn)A′,即可得到A'O=1,AA'=2,AO=,進(jìn)而得出cos∠AOA′的值.【題目詳解】如圖所示,點(diǎn)A(1,2)在x軸上的正投影為點(diǎn)A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.【題目點(diǎn)撥】本題主要考查了平行投影以及平面直角坐標(biāo)系,過已知點(diǎn)向坐標(biāo)軸作垂線,然后求出相關(guān)的線段長(zhǎng),是解決這類問題的基本方法和規(guī)律.15、1×10﹣1【解題分析】

絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【題目詳解】解:10nm用科學(xué)記數(shù)法可表示為1×10-1m,

故答案為1×10-1.【題目點(diǎn)撥】本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.16、30【解題分析】

根據(jù)角平分線的定義可得∠PBC=20°,∠PCM=50°,根據(jù)三角形外角性質(zhì)即可求出∠P的度數(shù).【題目詳解】∵BP是∠ABC的平分線,CP是∠ACM的平分線,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案為:30【題目點(diǎn)撥】本題考查及角平分線的定義及三角形外角性質(zhì),三角形的外角等于和它不相鄰的兩個(gè)內(nèi)角的和,熟練掌握三角形外角性質(zhì)是解題關(guān)鍵.17、1【解題分析】PC切⊙O于點(diǎn)C,則∠PCB=∠A,∠P=∠P,

∴△PCB∽△PAC,∴,∵BP=PC=3,

∴PC2=PB?PA,即36=3?PA,

∵PA=12

∴AB=12-3=1.故答案是:1.18、8π.【解題分析】試題分析:因?yàn)锳B為切線,P為切點(diǎn),劣弧AB所對(duì)圓心角考點(diǎn):勾股定理;垂徑定理;弧長(zhǎng)公式.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)1.【解題分析】

(1)先證明出△CEF≌△BED,得出CF=BD即可證明四邊形CDBF是平行四邊形;(2)作EM⊥DB于點(diǎn)M,根據(jù)平行四邊形的性質(zhì)求出BE,DF的值,再根據(jù)三角函數(shù)值求出EM的值,∠EDM=30°,由此可得出結(jié)論.【題目詳解】解:(1)證明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中點(diǎn),∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四邊形CDBF是平行四邊形.(2)解:如圖,作EM⊥DB于點(diǎn)M,∵四邊形CDBF是平行四邊形,BC=,∴,DF=2DE.在Rt△EMB中,EM=BE?sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【題目點(diǎn)撥】本題考查了平行四邊形的判定與全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握平行四邊形的判定與全等三角形的判定與性質(zhì).20、(1)證明見解析;(2)25°.【解題分析】試題分析:(1)根據(jù)等量代換可求得∠AOD=∠BOC,根據(jù)矩形的對(duì)邊相等,每個(gè)角都是直角,可知∠A=∠B=90°,AD=BC,根據(jù)三角形全等的判定AAS證得△AOD≌△BOC,從而得證結(jié)論.(2)利用切線的性質(zhì)和直角三角形的兩個(gè)銳角互余的性質(zhì)得到圓心角∠POA的度數(shù),然后利用圓周角定理來(lái)求∠ABC的度數(shù).試題解析:(1)∵∠AOC=∠BOD∴∠AOC-∠COD=∠BOD-∠COD即∠AOD=∠BOC∵四邊形ABCD是矩形∴∠A=∠B=90°,AD=BC∴∴AO=OB(2)解:∵AB是的直徑,PA與相切于點(diǎn)A,∴PA⊥AB,∴∠A=90°.又∵∠OPA=40°,∴∠AOP=50°,∵OB=OC,∴∠B=∠OCB.又∵∠AOP=∠B+∠OCB,∴.21、(1)3;(2);(3)【解題分析】

設(shè)塔的頂層共有盞燈,根據(jù)題意列出方程,進(jìn)行解答即可.參照題目中的解題方法進(jìn)行計(jì)算即可.由題意求得數(shù)列的每一項(xiàng),及前n項(xiàng)和Sn=2n+1-2-n,及項(xiàng)數(shù),由題意可知:2n+1為2的整數(shù)冪.只需將-2-n消去即可,分別分別即可求得N的值【題目詳解】設(shè)塔的頂層共有盞燈,由題意得.解得,頂層共有盞燈.設(shè),,即:.即由題意可知:20第一項(xiàng),20,21第二項(xiàng),20,21,22第三項(xiàng),…20,21,22…,2n?1第n項(xiàng),根據(jù)等比數(shù)列前n項(xiàng)和公式,求得每項(xiàng)和分別為:每項(xiàng)含有的項(xiàng)數(shù)為:1,2,3,…,n,總共的項(xiàng)數(shù)為所有項(xiàng)數(shù)的和為由題意可知:為2的整數(shù)冪,只需將?2?n消去即可,則①1+2+(?2?n)=0,解得:n=1,總共有,不滿足N>10,②1+2+4+(?2?n)=0,解得:n=5,總共有滿足,③1+2+4+8+(?2?n)=0,解得:n=13,總共有滿足,④1+2+4+8+16+(?2?n)=0,解得:n=29,總共有不滿足,∴【題目點(diǎn)撥】考查歸納推理,讀懂題目中等比數(shù)列的求和方法是解題的關(guān)鍵.22、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時(shí),當(dāng)點(diǎn)D運(yùn)動(dòng)到AB中點(diǎn)位置時(shí)四邊形CDBF為正方形.【解題分析】分析:(1)根據(jù)平移的性質(zhì)得到DF∥AC,所以由平行線的性質(zhì)、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數(shù)關(guān)系式;(2)不能為正方形,添加條件:AC=BC時(shí),點(diǎn)D運(yùn)動(dòng)到AB中點(diǎn)時(shí),四邊形CDBF為正方形;當(dāng)D運(yùn)動(dòng)到AB中點(diǎn)時(shí),四邊形CDBF是菱形,根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據(jù)有一內(nèi)角為直角的菱形是正方形來(lái)添加條件.詳解:(1)如圖(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時(shí),當(dāng)點(diǎn)D運(yùn)動(dòng)到AB中點(diǎn)位置時(shí)四邊形CDBF為正方形.∵∠ACB=∠DFE=90°,D是AB的中點(diǎn)∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四邊形CDBF是菱形;∵AC=BC,D是AB的中點(diǎn).∴CD⊥AB即∠CDB=90°∵四邊形CDBF為菱形,∴四邊形CDBF是正方形.點(diǎn)睛:本題是幾何變換綜合題型,主要考查了平移變換的性質(zhì),勾股定理,正方形的判定,菱形的判定與性質(zhì)以及直角三角形斜邊上的中線.(2)難度稍大,根據(jù)三角形斜邊上的中線推知CD=BD=BF=BE是解題的關(guān)鍵.23、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解題分析】

(1)根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;(2)①根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;②根據(jù)正方形的性質(zhì)和全等三角形的判定和性質(zhì)得出△ADP≌△PFN,進(jìn)而解答即可;(3)分兩種情況利用勾股定理和三角函數(shù)解答即可.【題目詳解】(1)DM=AD+AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點(diǎn)P旋轉(zhuǎn)90°得到EP,連接DE,過點(diǎn)E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=AP+PN=AD+AP;(2)①DM=AD﹣AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點(diǎn)P旋轉(zhuǎn)90°得到EP,連接DE,過點(diǎn)E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=PN﹣AP=AD﹣AP;②DM=AP﹣AD,理由如下:∵∠DAP+∠EPN=90°,∠EPN+∠PEN=90°,∴∠DAP=∠PEN,又∵∠A=∠PNE=90°,DP=PE,∴△DAP≌△PEN,∴AD=PN,∴DM=AN=AP﹣PN=AP﹣AD;(3)有兩種情況,如圖2,DM=3﹣,如圖3,DM=﹣1;①如圖2:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD==3,∴DM=AD﹣AP=3﹣;②如圖3:∵∠DEM=15°,∴∠PDA=∠PDE﹣∠ADE=45°﹣15°=30°,在Rt△PAD中AP=,AD=AP?tan30°==1,∴DM=AP﹣AD=﹣1.故答案為;DM=AD+AP;DM=AD﹣AP;3﹣或﹣1.【題目點(diǎn)撥】此題是四邊形綜合題,主要考查了正方形的性質(zhì)全等三角形的判定和性質(zhì),分類討論的數(shù)學(xué)思想解決問題,判斷出△ADP≌△PFN是解本題的關(guān)鍵.24、(1)B點(diǎn)到直線CA的距離是75海里;(2)執(zhí)法船從A到D航行了(75﹣25)海里.【解題分析】

(1)過點(diǎn)B作BH⊥CA交CA的延長(zhǎng)線于點(diǎn)H,根據(jù)三角函數(shù)可求BH的長(zhǎng);(2)根據(jù)勾股定理可求DH,在Rt△ABH中,根據(jù)三角函數(shù)可求AH,進(jìn)一步得到AD的長(zhǎng).【題目詳解】解:(1)過點(diǎn)B作BH⊥CA交CA的延長(zhǎng)線于點(diǎn)H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×=75(海里).答:B點(diǎn)到直線CA的距離是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH==,∴AH=25,∴AD=DH﹣AH=(75﹣25)(海里).答:執(zhí)法船從A到D航行了(75﹣25)海里.【題目點(diǎn)撥】本題主要考查了勾股定理的應(yīng)用,解直角三角形的應(yīng)用-方向角問題.能合理構(gòu)造直角三角形,并利用方向角求得三角形內(nèi)角的大小是解決此題

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論