山東省淄博市周村區(qū)萌水中學2024屆中考考前最后一卷數(shù)學試卷含解析_第1頁
山東省淄博市周村區(qū)萌水中學2024屆中考考前最后一卷數(shù)學試卷含解析_第2頁
山東省淄博市周村區(qū)萌水中學2024屆中考考前最后一卷數(shù)學試卷含解析_第3頁
山東省淄博市周村區(qū)萌水中學2024屆中考考前最后一卷數(shù)學試卷含解析_第4頁
山東省淄博市周村區(qū)萌水中學2024屆中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省淄博市周村區(qū)萌水中學2024屆中考考前最后一卷數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在實數(shù),,,中,其中最小的實數(shù)是()A. B. C. D.2.直線AB、CD相交于點O,射線OM平分∠AOD,點P在射線OM上(點P與點O不重合),如果以點P為圓心的圓與直線AB相離,那么圓P與直線CD的位置關系是()A.相離 B.相切 C.相交 D.不確定3.下列安全標志圖中,是中心對稱圖形的是()A. B. C. D.4.如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖①是產(chǎn)品日銷售量y(單位:件)與時間t(單位;天)的函數(shù)關系,圖②是一件產(chǎn)品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關系,已知日銷售利潤=日銷售量×一件產(chǎn)品的銷售利潤,下列結(jié)論錯誤的是()A.第24天的銷售量為200件 B.第10天銷售一件產(chǎn)品的利潤是15元C.第12天與第30天這兩天的日銷售利潤相等 D.第27天的日銷售利潤是875元5.已知二次函數(shù)(為常數(shù)),當自變量的值滿足時,與其對應的函數(shù)值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或56.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM和BC的長分別為()A.2,π3 B.23,π C.3,2π3 D.237.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.38.據(jù)統(tǒng)計,2015年廣州地鐵日均客運量均為人次,將用科學記數(shù)法表示為()A. B. C. D.9.下列運算正確的是()A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x310.如圖圖形中,可以看作中心對稱圖形的是()A. B. C. D.11.如圖,Rt△ABC中,∠C=90°,AC=4,BC=4,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為()A.2π B.4π C.6π D.8π12.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據(jù)是()A.SAS B.SSS C.AAS D.ASA二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標系中,矩形活動框架ABCD的長AB為2,寬AD為,其中邊AB在x軸上,且原點O為AB的中點,固定點A、B,把這個矩形活動框架沿箭頭方向推,使D落在y軸的正半軸上點D′處,點C的對應點C′的坐標為______.14.因式分解:9a3b﹣ab=_____.15.已知三個數(shù)據(jù)3,x+3,3﹣x的方差為,則x=_____.16.若方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),則m=______17.某次數(shù)學測試,某班一個學習小組的六位同學的成績?nèi)缦拢?4、75、75、92、86、99,則這六位同學成績的中位數(shù)是_____.18.如圖,在△ABC中,AD、BE分別是邊BC、AC上的中線,AB=AC=5,cos∠C=,那么GE=_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖1為某教育網(wǎng)站一周內(nèi)連續(xù)7天日訪問總量的條形統(tǒng)計圖,如圖2為該網(wǎng)站本周學生日訪問量占日訪問總量的百分比統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息完成下列填空:這一周訪問該網(wǎng)站一共有萬人次;周日學生訪問該網(wǎng)站有萬人次;周六到周日學生訪問該網(wǎng)站的日平均增長率為.20.(6分)解不等式組,并把它的解集表示在數(shù)軸上.21.(6分)已知正方形ABCD的邊長為2,作正方形AEFG(A,E,F(xiàn),G四個頂點按逆時針方向排列),連接BE、GD,(1)如圖①,當點E在正方形ABCD外時,線段BE與線段DG有何關系?直接寫出結(jié)論;(2)如圖②,當點E在線段BD的延長線上,射線BA與線段DG交于點M,且DG=2DM時,求邊AG的長;(3)如圖③,當點E在正方形ABCD的邊CD所在的直線上,直線AB與直線DG交于點M,且DG=4DM時,直接寫出邊AG的長.22.(8分)已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.求證:BE=DF;連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結(jié)論.23.(8分)如圖,在直角坐標系xOy中,直線與雙曲線相交于A(-1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.求m、n的值;求直線AC的解析式.24.(10分)如圖,AB為⊙O的直徑,點D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.25.(10分)黃巖某校搬遷后,需要增加教師和學生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在20至30之間(包括20和30),且四人間的數(shù)量是雙人間的5倍.(1)若2018年學校寢室數(shù)為64個,以后逐年增加,預計2020年寢室數(shù)達到121個,求2018至2020年寢室數(shù)量的年平均增長率;(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?26.(12分)在如圖的正方形網(wǎng)格中,每一個小正方形的邊長均為1.格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(﹣2,0),(﹣3,3).(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標系,寫出點B的坐標;(2)把△ABC繞坐標原點O順時針旋轉(zhuǎn)90°得到△A1B1C1,畫出△A1B1C1,寫出點B1的坐標;(3)以坐標原點O為位似中心,相似比為2,把△A1B1C1放大為原來的2倍,得到△A2B2C2畫出△A2B2C2,使它與△AB1C1在位似中心的同側(cè);請在x軸上求作一點P,使△PBB1的周長最小,并寫出點P的坐標.27.(12分)在矩形中,點在上,,⊥,垂足為.求證.若,且,求.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】

由正數(shù)大于一切負數(shù),負數(shù)小于0,正數(shù)大于0,兩個負數(shù)絕對值大的反而小,把這四個數(shù)從小到大排列,即可求解.【題目詳解】解:∵0,-2,1,中,-2<0<1<,

∴其中最小的實數(shù)為-2;

故選:B.【題目點撥】本題考查了實數(shù)的大小比較,關鍵是掌握:正數(shù)大于0,負數(shù)小于0,正數(shù)大于一切負數(shù),兩個負數(shù)絕對值大的反而?。?、A【解題分析】

根據(jù)角平分線的性質(zhì)和點與直線的位置關系解答即可.【題目詳解】解:如圖所示;∵OM平分∠AOD,以點P為圓心的圓與直線AB相離,∴以點P為圓心的圓與直線CD相離,故選:A.【題目點撥】此題考查直線與圓的位置關系,關鍵是根據(jù)角平分線的性質(zhì)解答.3、B【解題分析】試題分析:A.不是中心對稱圖形,故此選項不合題意;B.是中心對稱圖形,故此選項符合題意;C.不是中心對稱圖形,故此選項不符合題意;D.不是中心對稱圖形,故此選項不合題意;故選B.考點:中心對稱圖形.4、C【解題分析】試題解析:A、根據(jù)圖①可得第24天的銷售量為200件,故正確;B、設當0≤t≤20,一件產(chǎn)品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關系為z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,當x=10時,y=-10+25=15,故正確;C、當0≤t≤24時,設產(chǎn)品日銷售量y(單位:件)與時間t(單位;天)的函數(shù)關系為y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=t+100,當t=12時,y=150,z=-12+25=13,∴第12天的日銷售利潤為;150×13=1950(元),第30天的日銷售利潤為;150×5=750(元),750≠1950,故C錯誤;D、第30天的日銷售利潤為;150×5=750(元),故正確.故選C5、D【解題分析】

由解析式可知該函數(shù)在時取得最小值0,拋物線開口向上,當時,y隨x的增大而增大;當時,y隨x的增大而減??;根據(jù)時,函數(shù)的最小值為4可分如下三種情況:①若,時,y取得最小值4;②若-1<h<3時,當x=h時,y取得最小值為0,不是4;③若,當x=3時,y取得最小值4,分別列出關于h的方程求解即可.【題目詳解】解:∵當x>h時,y隨x的增大而增大,當時,y隨x的增大而減小,并且拋物線開口向上,

∴①若,當時,y取得最小值4,

可得:4,

解得或(舍去);

②若-1<h<3時,當x=h時,y取得最小值為0,不是4,

∴此種情況不符合題意,舍去;

③若-1≤x≤3<h,當x=3時,y取得最小值4,

可得:,

解得:h=5或h=1(舍).

綜上所述,h的值為-3或5,

故選:D.【題目點撥】本題主要考查二次函數(shù)的性質(zhì)和最值,根據(jù)二次函數(shù)的性質(zhì)和最值分類討論是解題的關鍵.6、D【解題分析】試題分析:連接OB,∵OB=4,∴BM=2,∴OM=23,BC=故選D.考點:1正多邊形和圓;2.弧長的計算.7、B【解題分析】【分析】依據(jù)點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設C(a,),則B(3a,),A(a,),依據(jù)AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據(jù)C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.【題目詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【題目點撥】本題主要考查了反比例函數(shù)圖象上點的坐標特征,注意反比例函數(shù)圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.8、D【解題分析】

科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【題目詳解】解:6

590

000=6.59×1.故選:D.【題目點撥】本題考查學生對科學記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.9、B【解題分析】分析:根據(jù)完全平方公式、負整數(shù)指數(shù)冪,合并同類項以及同底數(shù)冪的除法的運算法則進行計算即可判斷出結(jié)果.詳解:A.(a﹣3)2=a2﹣6a+9,故該選項錯誤;B.()﹣1=2,故該選項正確;C.x與y不是同類項,不能合并,故該選項錯誤;D.x6÷x2=x6-2=x4,故該選項錯誤.故選B.點睛:可不是主要考查了完全平方公式、負整數(shù)指數(shù)冪,合并同類項以及同度數(shù)冪的除法的運算,熟記它們的運算法則是解題的關鍵.10、D【解題分析】

根據(jù)把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心進行分析即可.【題目詳解】解:A、不是中心對稱圖形,故此選項不合題意;B、不是中心對稱圖形,故此選項不合題意;C、不是中心對稱圖形,故此選項不合題意;D、是中心對稱圖形,故此選項符合題意;故選D.【題目點撥】此題主要考查了中心對稱圖形,關鍵掌握中心對稱圖形定義.11、B【解題分析】

先依據(jù)勾股定理求得AB的長,從而可求得兩圓的半徑為4,然后由∠A+∠B=90°可知陰影部分的面積等于一個圓的面積的.【題目詳解】在△ABC中,依據(jù)勾股定理可知AB==8,∵兩等圓⊙A,⊙B外切,∴兩圓的半徑均為4,∵∠A+∠B=90°,∴陰影部分的面積==4π.故選:B.【題目點撥】本題主要考查的是相切兩圓的性質(zhì)、勾股定理的應用、扇形面積的計算,求得兩個扇形的半徑和圓心角之和是解題的關鍵.12、B【解題分析】

由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據(jù)SSS可得到三角形全等.【題目詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選:B.【題目點撥】本題主要考查了全等三角形的判定,關鍵是掌握全等三角形的判定定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(2,1)【解題分析】

由已知條件得到AD′=AD=,AO=AB=1,根據(jù)勾股定理得到OD′==1,于是得到結(jié)論.【題目詳解】解:∵AD′=AD=,AO=AB=1,∴OD′==1,∵C′D′=2,C′D′∥AB,

∴C′(2,1),

故答案為:(2,1)【題目點撥】本題考查了矩形的性質(zhì),坐標與圖形的性質(zhì),勾股定理,正確的識別圖形是解題的關鍵.14、ab(3a+1)(3a-1).【解題分析】試題分析:原式提取公因式后,利用平方差公式分解即可.試題解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考點:提公因式法與公式法的綜合運用.15、±1【解題分析】

先由平均數(shù)的計算公式求出這組數(shù)據(jù)的平均數(shù),再代入方差公式進行計算,即可求出x的值.【題目詳解】解:這三個數(shù)的平均數(shù)是:(3+x+3+3-x)÷3=3,則方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,解得:x=±1;故答案為:±1.【題目點撥】本題考查方差的定義:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.16、﹣1【解題分析】

根據(jù)“方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù)”,利用一元二次方程根與系數(shù)的關系,列出關于m的等式,解之,再把m的值代入原方程,找出符合題意的m的值即可.【題目詳解】∵方程x2+(m2﹣1)x+1+m=0的兩根互為相反數(shù),∴1﹣m2=0,解得:m=1或﹣1,把m=1代入原方程得:x2+2=0,該方程無解,∴m=1不合題意,舍去,把m=﹣1代入原方程得:x2=0,解得:x1=x2=0,(符合題意),∴m=﹣1,故答案為﹣1.【題目點撥】本題考查了根與系數(shù)的關系,正確掌握一元二次方程兩根之和,兩個之積與系數(shù)之間的關系式解題的關鍵.若x1,x2為方程的兩個根,則x1,x2與系數(shù)的關系式:,.17、85【解題分析】

根據(jù)中位數(shù)求法,將學生成績從小到大排列,取中間兩數(shù)的平均數(shù)即可解題.【題目詳解】解:將六位同學的成績按從小到大進行排列為:75,75,84,86,92,99,中位數(shù)為中間兩數(shù)84和86的平均數(shù),∴這六位同學成績的中位數(shù)是85.【題目點撥】本題考查了中位數(shù)的求法,屬于簡單題,熟悉中位數(shù)的概念是解題關鍵.18、【解題分析】

過點E作EF⊥BC交BC于點F,分別求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再結(jié)合△BGD∽△BEF即可.【題目詳解】過點E作EF⊥BC交BC于點F.∵AB=AC,AD為BC的中線∴AD⊥BC∴EF為△ADC的中位線.又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2∴BF=6∴在Rt△BEF中BE==,又∵△BGD∽△BEF∴,即BG=.GE=BE-BG=故答案為.【題目點撥】本題考查的知識點是三角形的相似,解題的關鍵是熟練的掌握三角形的相似.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)10;(2)0.9;(3)44%【解題分析】

(1)把條形統(tǒng)計圖中每天的訪問量人數(shù)相加即可得出答案;(2)由星期日的日訪問總量為3萬人次,結(jié)合扇形統(tǒng)計圖可得星期日學生日訪問總量占日訪問總量的百分比為30%,繼而求得星期日學生日訪問總量;(3)根據(jù)增長率的算數(shù)列出算式,再進行計算即可.【題目詳解】(1)這一周該網(wǎng)站訪問總量為:0.5+1+0.5+1+1.5+2.5+3=10(萬人次);故答案為10;(2)∵星期日的日訪問總量為3萬人次,星期日學生日訪問總量占日訪問總量的百分比為30%,∴星期日學生日訪問總量為:3×30%=0.9(萬人次);故答案為0.9;(3)周六到周日學生訪問該網(wǎng)站的日平均增長率為:=44%;故答案為44%.考點:折線統(tǒng)計圖;條形統(tǒng)計圖20、不等式組的解是x≥3;圖見解析【解題分析】

先求出每個不等式的解集,再求出不等式組的解集即可.【題目詳解】解:∵解不等式①,得x≥3,解不等式②,得x≥-1.5,∴不等式組的解是x≥3,在數(shù)軸上表示為:.【題目點撥】本題考查了解一元一次不等式組和在數(shù)軸上表示不等式組的解集,能根據(jù)不等式的解集找出不等式組的解集是解此題的關鍵.21、(1)結(jié)論:BE=DG,BE⊥DG.理由見解析;(1)AG=1;(3)滿足條件的AG的長為1或1.【解題分析】

(1)結(jié)論:BE=DG,BE⊥DG.只要證明△BAE≌△DAG(SAS),即可解決問題;(1)如圖②中,連接EG,作GH⊥AD交DA的延長線于H.由A,D,E,G四點共圓,推出∠ADO=∠AEG=45°,解直角三角形即可解決問題;(3)分兩種情形分別畫出圖形即可解決問題;【題目詳解】(1)結(jié)論:BE=DG,BE⊥DG.理由:如圖①中,設BE交DG于點K,AE交DG于點O.∵四邊形ABCD,四邊形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∴∠AEB=∠AGD,∵∠AOG=∠EOK,∴∠OAG=∠OKE=90°,∴BE⊥DG.(1)如圖②中,連接EG,作GH⊥AD交DA的延長線于H.∵∠OAG=∠ODE=90°,∴A,D,E,G四點共圓,∴∠ADO=∠AEG=45°,∵∠DAM=90°,∴∠ADM=∠AMD=45°,∴∵DG=1DM,∴∵∠H=90°,∴∠HDG=∠HGD=45°,∴GH=DH=4,∴AH=1,在Rt△AHG中,(3)①如圖③中,當點E在CD的延長線上時.作GH⊥DA交DA的延長線于H.易證△AHG≌△EDA,可得GH=AB=1,∵DG=4DM.AM∥GH,∴∴DH=8,∴AH=DH﹣AD=6,在Rt△AHG中,②如圖3﹣1中,當點E在DC的延長線上時,易證:△AKE≌△GHA,可得AH=EK=BC=1.∵AD∥GH,∴∵AD=1,∴HG=10,在Rt△AGH中,綜上所述,滿足條件的AG的長為或.【題目點撥】本題屬于四邊形綜合題,考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),平行線分線段成比例定理,等腰直角三角形的性質(zhì)和判定,勾股定理等知識,解題的關鍵是學會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.22、(1)證明見解析;(2)四邊形AEMF是菱形,證明見解析.【解題分析】

(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結(jié)論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質(zhì)可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相平分,再根據(jù)一組鄰邊相等的平行四邊形是菱形,即可判定四邊形AEMF是菱形.【題目詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四邊形AEMF是菱形,理由為:證明:∵四邊形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的對角線平分一組對角),BC=DC(正方形四條邊相等),∵BE=DF(已證),∴BC-BE=DC-DF(等式的性質(zhì)),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四邊形AEMF是平行四邊形(對角線互相平分的四邊形是平行四邊形),∵AE=AF,∴平行四邊形AEMF是菱形.23、(1)m=-1,n=-1;(2)y=-x+【解題分析】

(1)由直線與雙曲線相交于A(-1,a)、B兩點可得B點橫坐標為1,點C的坐標為(1,0),再根據(jù)△AOC的面積為1可求得點A的坐標,從而求得結(jié)果;(2)設直線AC的解析式為y=kx+b,由圖象過點A(-1,1)、C(1,0)根據(jù)待定系數(shù)法即可求的結(jié)果.【題目詳解】(1)∵直線與雙曲線相交于A(-1,a)、B兩點,∴B點橫坐標為1,即C(1,0)∵△AOC的面積為1,∴A(-1,1)將A(-1,1)代入,可得m=-1,n=-1;(2)設直線AC的解析式為y=kx+b∵y=kx+b經(jīng)過點A(-1,1)、C(1,0)∴解得k=-,b=.∴直線AC的解析式為y=-x+.【題目點撥】本題考查了一次函數(shù)與反比例函數(shù)圖象的交點問題,此類問題是初中數(shù)學的重點,在中考中極為常見,熟練掌握待定系數(shù)法是解題關鍵.24、(1)詳見解析;(2)①67.5°;②90°.【解題分析】

(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據(jù)題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據(jù)四邊形ADFP是菱形和菱形的性質(zhì),可以求得∠DAE的度數(shù);②根據(jù)四邊形BFDP是正方形,可以求得∠DAE的度數(shù).【題目詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時點P與點O重合,∴此時DE是直徑,∴∠EAD=90°,故答案為:90°.【題目點撥】本題考查菱形的判定與性質(zhì)、切線的性質(zhì)、正方形的判定,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用菱形的性質(zhì)和正方形的性質(zhì)解答.25、(1)2018至2020年寢室數(shù)量的年平均增長率為37.5%;(2)該校的寢室建成后最多可供1名師生住宿.【解題分析】

(1)設2018至2020年寢室數(shù)量的年平均增長率為x,根據(jù)2018及2020年寢室數(shù)量,即可得出關于x的一元二次方程,解之取其正值即可得出結(jié)論;(2)設雙人間有y間,則四人間有5y間,單人間有(121-6y)間,可容納人數(shù)為w人,由單人間的數(shù)量在20至30之間(包括20和30),即可得出關于y的一元一次不等式組,解之即可得出y的取值范圍,再根據(jù)可住師生數(shù)=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論