2024屆吉林省吉林市普通中學中考猜題數(shù)學試卷含解析_第1頁
2024屆吉林省吉林市普通中學中考猜題數(shù)學試卷含解析_第2頁
2024屆吉林省吉林市普通中學中考猜題數(shù)學試卷含解析_第3頁
2024屆吉林省吉林市普通中學中考猜題數(shù)學試卷含解析_第4頁
2024屆吉林省吉林市普通中學中考猜題數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆吉林省吉林市普通中學中考猜題數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.方程的解是().A. B. C. D.2.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:13.如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,則DE的長為()A.6 B.8 C.10 D.124.下列方程中,沒有實數(shù)根的是()A. B.C. D.5.已知y關于x的函數(shù)圖象如圖所示,則當y<0時,自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<26.一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是()(結果保留小數(shù)點后兩位)(參考數(shù)據(jù):3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里7.下列“數(shù)字圖形”中,既是軸對稱圖形,又是中心對稱圖形的有()A.1個B.2個C.3個D.4個8.如圖,四個有理數(shù)在數(shù)軸上的對應點M,P,N,Q,若點M,N表示的有理數(shù)互為相反數(shù),則圖中表示絕對值最小的數(shù)的點是()A.點M B.點N C.點P D.點Q9.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.1410.已知點,與點關于軸對稱的點的坐標是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:ax2-a=______.12.意大利著名數(shù)學家斐波那契在研究兔子繁殖問題時,發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,請根據(jù)這組數(shù)的規(guī)律寫出第10個數(shù)是______.13.如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點D為AB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰在弧EF上,則圖中陰影部分的面積為__________.14.2017年12月31日晚,鄭東新區(qū)如意湖文化廣場舉行了“文化跨年夜、出彩鄭州人”的跨年慶祝活動,大學生小明和小剛都各自前往觀看了演出,而且他們兩人前往時選擇了以下三種交通工具中的一種:共享單車、公交、地鐵,則他們兩人選擇同一種交通工具前往觀看演出的概率為_____.15.如果關于x的方程x2+kx+34k2-3k+16.小明為了統(tǒng)計自己家的月平均用電量,做了如下記錄并制成了表格,通過計算分析小明得出一個結論:小明家的月平均用電量為330千瓦時.請判斷小明得到的結論是否合理并且說明理由______.月份六月七月八月用電量(千瓦時)290340360月平均用電量(千瓦時)330三、解答題(共8題,共72分)17.(8分)某中學響應“陽光體育”活動的號召,準備從體育用品商店購買一些排球、足球和籃球,排球和足球的單價相同,同一種球的單價相同,若購買2個足球和3個籃球共需340元,購買4個排球和5個籃球共需600元.(1)求購買一個足球,一個籃球分別需要多少元?(2)該中學根據(jù)實際情況,需從體育用品商店一次性購買三種球共100個,且購買三種球的總費用不超過6000元,求這所中學最多可以購買多少個籃球?18.(8分)某銷售商準備在南充采購一批絲綢,經調查,用10000元采購A型絲綢的件數(shù)與用8000元采購B型絲綢的件數(shù)相等,一件A型絲綢進價比一件B型絲綢進價多100元.(1)求一件A型、B型絲綢的進價分別為多少元?(2)若銷售商購進A型、B型絲綢共50件,其中A型的件數(shù)不大于B型的件數(shù),且不少于16件,設購進A型絲綢m件.①求m的取值范圍.②已知A型的售價是800元/件,銷售成本為2n元/件;B型的售價為600元/件,銷售成本為n元/件.如果50≤n≤150,求銷售這批絲綢的最大利潤w(元)與n(元)的函數(shù)關系式.19.(8分)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A作BC的平行線交CE的延長線與F,且AF=BD,連接BF。求證:D是BC的中點;如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論。20.(8分)如圖,在平面直角坐標系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).求直線與雙曲線的表達式;過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標.21.(8分)如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.(1)求證:CF是⊙O的切線;(2)若∠F=30°,EB=6,求圖中陰影部分的面積.(結果保留根號和π)22.(10分)先化簡,再求值:,其中x=﹣1.23.(12分)如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數(shù)圖象的一個交點為M(﹣2,m).(1)求反比例函數(shù)的解析式;(2)求點B到直線OM的距離.24.在“弘揚傳統(tǒng)文化,打造書香校園”活動中,學校計劃開展四項活動:“A-國學誦讀”、“B-演講”、“C-課本劇”、“D-書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意思,隨機調查了部分學生,結果統(tǒng)計如下:(1)根據(jù)題中信息補全條形統(tǒng)計圖.(2)所抽取的學生參加其中一項活動的眾數(shù)是.(3)學?,F(xiàn)有800名學生,請根據(jù)圖中信息,估算全校學生希望參加活動A有多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】

直接解分式方程,注意要驗根.【題目詳解】解:=0,方程兩邊同時乘以最簡公分母x(x+1),得:3(x+1)-7x=0,解這個一元一次方程,得:x=,經檢驗,x=是原方程的解.故選B.【題目點撥】本題考查了解分式方程,解分式方程不要忘記驗根.2、C【解題分析】

求出正六邊形和陰影部分的面積即可解決問題;【題目詳解】解:正六邊形的面積,

陰影部分的面積,

空白部分與陰影部分面積之比是::1,

故選C.【題目點撥】本題考查正多邊形的性質、平移變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.3、C【解題分析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四邊形BFED是平行四邊形,∴BD=EF,∴,解得:DE=10.故選C.4、B【解題分析】

分別計算四個方程的判別式的值,然后根據(jù)判別式的意義確定正確選項.【題目詳解】解:A、△=(-2)2-4×(-3)=16>0,方程有兩個不相等的兩個實數(shù)根,所以A選項錯誤;

B、△=(-2)2-4×3=-8<0,方程沒有實數(shù)根,所以B選項正確;

C、△=(-2)2-4×1=0,方程有兩個相等的兩個實數(shù)根,所以C選項錯誤;

D、△=(-2)2-4×(-1)=8>0,方程有兩個不相等的兩個實數(shù)根,所以D選項錯誤.

故選:B.【題目點撥】本題考查根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0根時,方程有兩個不相等的兩個實數(shù)根;當△=0時,方程有兩個相等的兩個實數(shù)根;當△<0時,方程無實數(shù)根.5、B【解題分析】y<0時,即x軸下方的部分,∴自變量x的取值范圍分兩個部分是?1<x<1或x>2.故選B.6、B【解題分析】

根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據(jù)三角形內角和和等腰三角形的性質得出BA=BE,AD=DE,設BD=x,Rt△ABD中,根據(jù)勾股定理得AD=DE=

3x,AB=BE=CE=2x,由AC=AD+DE+EC=2

3x+2x=30,解之即可得出答案.【題目詳解】根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

設BD=x,

在Rt△ABD中,

∴AD=DE=

3x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

3x+2x=30,

∴x=153+1

=

15【題目點撥】本題考查了三角形內角和定理與等腰直角三角形的性質,解題的關鍵是熟練的掌握三角形內角和定理與等腰直角三角形的性質.7、C【解題分析】

根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【題目詳解】第一個圖形不是軸對稱圖形,是中心對稱圖形;第二、三、四個圖形是軸對稱圖形,也是中心對稱圖形;故選:C.【題目點撥】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.8、C【解題分析】試題分析:∵點M,N表示的有理數(shù)互為相反數(shù),∴原點的位置大約在O點,∴絕對值最小的數(shù)的點是P點,故選C.考點:有理數(shù)大小比較.9、C【解題分析】

根據(jù)三角形的面積公式以及切線長定理即可求出答案.【題目詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【題目點撥】本題考查切線長定理,解題的關鍵是畫出輔助線,熟練運用切線長定理,本題屬于中等題型.10、C【解題分析】

根據(jù)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù),可得答案.【題目詳解】解:點,與點關于軸對稱的點的坐標是,

故選:C.【題目點撥】本題考查了關于y軸對稱的點的坐標,解決本題的關鍵是掌握好對稱點的坐標規(guī)律:關于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù);關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù);關于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、【解題分析】

先提公因式,再套用平方差公式.【題目詳解】ax2-a=a(x2-1)=故答案為:【題目點撥】掌握因式分解的一般方法:提公因式法,公式法.12、1【解題分析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以發(fā)現(xiàn):從第三個數(shù)起,每一個數(shù)都等于它前面兩個數(shù)的和.則第8個數(shù)為13+8=21;第9個數(shù)為21+13=34;第10個數(shù)為34+21=1.故答案為1.點睛:此題考查了數(shù)字的有規(guī)律變化,解答此類題目的關鍵是要求學生通對題目中給出的圖表、數(shù)據(jù)等認真進行分析、歸納并發(fā)現(xiàn)其中的規(guī)律,并應用規(guī)律解決問題.此類題目難度一般偏大.13、.【解題分析】

連接CD,根據(jù)題意可得△DCE≌△BDF,陰影部分的面積等于扇形的面積減去△BCD的面積.【題目詳解】解:連接CD,

作DM⊥BC,DN⊥AC.

∵CA=CB,∠ACB=90°,點D為AB的中點,

∴DC=AB=1,四邊形DMCN是正方形,DM=.

則扇形FDE的面積是:.

∵CA=CB,∠ACB=90°,點D為AB的中點,

∴CD平分∠BCA,

又∵DM⊥BC,DN⊥AC,

∴DM=DN,

∵∠GDH=∠MDN=90°,

∴∠GDM=∠HDN,

則在△DMG和△DNH中,,

∴△DMG≌△DNH(AAS),

∴S四邊形DGCH=S四邊形DMCN=.

則陰影部分的面積是:.故答案為:.【題目點撥】本題考查了三角形的全等的判定與扇形的面積的計算的綜合題,正確證明△DMG≌△DNH,得到S四邊形DGCH=S四邊形DMCN是關鍵.14、【解題分析】

首先根據(jù)題意畫樹狀圖,然后根據(jù)樹狀圖即可求得所有等可能的結果,最后用概率公式求解即可求得答案.【題目詳解】樹狀圖如圖所示,

∴一共有9種等可能的結果;

根據(jù)樹狀圖知,兩人選擇同一種交通工具前往觀看演出的有3種情況,

∴選擇同一種交通工具前往觀看演出的概率:,

故答案為.【題目點撥】此題考查了樹狀圖法求概率.注意樹狀圖法適合兩步或兩步以上完成的事件,樹狀圖法可以不重不漏的表示出所有等可能的結果,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、-【解題分析】

由方程有兩個實數(shù)根,得到根的判別式的值大于等于0,列出關于k的不等式,利用非負數(shù)的性質得到k的值,確定出方程,求出方程的解,代入所求式子中計算即可求出值.【題目詳解】∵方程x2+kx+34∴b2-4ac=k2-4(34k2-3k+92)=-2k2+12k-18=-2(k-3)∴k=3,代入方程得:x2+3x+94=(x+32)解得:x1=x2=-32則x12017x故答案為-23【題目點撥】此題考查了根的判別式,非負數(shù)的性質,以及配方法的應用,求出k的值是本題的突破點.16、不合理,樣本數(shù)據(jù)不具有代表性【解題分析】

根據(jù)表中所取的樣本不具有代表性即可得到結論.【題目詳解】不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).故答案為:不合理,樣本數(shù)據(jù)不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).【題目點撥】本題考查了統(tǒng)計表,認真分析表中數(shù)據(jù)是解題的關鍵.三、解答題(共8題,共72分)17、(1)一個足球需要50元,一個籃球需要80元;(2)1個.【解題分析】

(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,根據(jù)購買2個足球和3個籃球共需340元,4個排球和5個籃球共需600元,可得出方程組,解出即可;【題目詳解】(1)設購買一個足球需要x元,則購買一個排球也需要x元,購買一個籃球y元,由題意得:2x+3y=解得:x=50y=80答:購買一個足球需要50元,購買一個籃球需要80元;(2)設該中學購買籃球m個,由題意得:80m+50(100﹣m)≤6000,解得:m≤113∵m是整數(shù),∴m最大可取1.答:這所中學最多可以購買籃球1個.【題目點撥】本題考查了一元一次不等式及二元一次方程組的知識,解答本題的關鍵是仔細審題,得到等量關系及不等關系,難度一般.18、(1)一件A型、B型絲綢的進價分別為500元,400元;(2)①,②.【解題分析】

(1)根據(jù)題意應用分式方程即可;(2)①根據(jù)條件中可以列出關于m的不等式組,求m的取值范圍;②本問中,首先根據(jù)題意,可以先列出銷售利潤y與m的函數(shù)關系,通過討論所含字母n的取值范圍,得到w與n的函數(shù)關系.【題目詳解】(1)設型絲綢的進價為元,則型絲綢的進價為元,根據(jù)題意得:,解得,經檢驗,為原方程的解,,答:一件型、型絲綢的進價分別為500元,400元.(2)①根據(jù)題意得:,的取值范圍為:,②設銷售這批絲綢的利潤為,根據(jù)題意得:,,(Ⅰ)當時,,時,銷售這批絲綢的最大利潤;(Ⅱ)當時,,銷售這批絲綢的最大利潤;(Ⅲ)當時,當時,銷售這批絲綢的最大利潤.綜上所述:.【題目點撥】本題綜合考察了分式方程、不等式組以及一次函數(shù)的相關知識.在第(2)問②中,進一步考查了,如何解決含有字母系數(shù)的一次函數(shù)最值問題.19、(1)詳見解析;(2)詳見解析【解題分析】

(1)根據(jù)兩直線平行,內錯角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,再根據(jù)全等三角形的性質和等量關系即可求解;(2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.【題目詳解】(1)證明:∵AF∥BC,∴∠AFE=∠DCE,∵點E為AD的中點,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中點;(2)若AB=AC,則四邊形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四邊形AFBD是矩形.【題目點撥】本題考查了矩形的判定,全等三角形的判定與性質,平行四邊形的判定,是基礎題,明確有一個角是直角的平行四邊形是矩形是解本題的關鍵.20、(1)直線的表達式為,雙曲線的表達方式為;(2)點P的坐標為或【解題分析】分析:(1)將點B(-1,4)代入直線和雙曲線解析式求出k和m的值即可;(2)根據(jù)直線解析式求得點A坐標,由S△ACP=AC?|yP|=4求得點P的縱坐標,繼而可得答案.詳解:(1)∵直線與雙曲線()都經過點B(-1,4),,,∴直線的表達式為,雙曲線的表達方式為.(2)由題意,得點C的坐標為C(-1,0),直線與x軸交于點A(3,0),,∵,,點P在雙曲線上,∴點P的坐標為或.點睛:本題主要考查反比例函數(shù)和一次函數(shù)的交點問題,熟練掌握待定系數(shù)法求函數(shù)解析式及三角形的面積是解題的關鍵.21、(1)證明見解析;(2)93﹣3π【解題分析】試題分析:(1)、連接OD,根據(jù)平行四邊形的性質得出∠AOC=∠OBE,∠COD=∠ODB,結合OB=OD得出∠DOC=∠AOC,從而證明出△COD和△COA全等,從而的得出答案;(2)、首先根據(jù)題意得出△OBD為等邊三角形,根據(jù)等邊三角形的性質得出EC=ED=BO=DB,根據(jù)Rt△AOC的勾股定理得出AC的長度,然后根據(jù)陰影部分的面積等于兩個△AOC的面積減去扇形OAD的面積得出答案.試題解析:(1)如圖連接OD.∵四邊形OBEC是平行四邊形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切線.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論