江蘇省南京市鼓樓區(qū)金陵匯文中學(xué)2024屆中考試題猜想數(shù)學(xué)試卷含解析_第1頁
江蘇省南京市鼓樓區(qū)金陵匯文中學(xué)2024屆中考試題猜想數(shù)學(xué)試卷含解析_第2頁
江蘇省南京市鼓樓區(qū)金陵匯文中學(xué)2024屆中考試題猜想數(shù)學(xué)試卷含解析_第3頁
江蘇省南京市鼓樓區(qū)金陵匯文中學(xué)2024屆中考試題猜想數(shù)學(xué)試卷含解析_第4頁
江蘇省南京市鼓樓區(qū)金陵匯文中學(xué)2024屆中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省南京市鼓樓區(qū)金陵匯文中學(xué)2024屆中考試題猜想數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算2.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應(yīng)的標(biāo)號是A. B. C. D.3.下列計算正確的是()A.a(chǎn)3?a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a(chǎn)+2a=3a4.若△ABC與△DEF相似,相似比為2:3,則這兩個三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:45.小宇媽媽上午在某水果超市買了16.5元錢的葡萄,晚上散步經(jīng)過該水果超市時,發(fā)現(xiàn)同一批葡萄的價格降低了25%,小宇媽媽又買了16.5元錢的葡萄,結(jié)果恰好比早上多了0.5千克.若設(shè)早上葡萄的價格是x元/千克,則可列方程()A. B.C. D.6.如圖,直線、及木條在同一平面上,將木條繞點旋轉(zhuǎn)到與直線平行時,其最小旋轉(zhuǎn)角為().A. B. C. D.7.在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點叫做整點.對于一條直線,當(dāng)它與一個圓的公共點都是整點時,我們把這條直線稱為這個圓的“整點直線”.已知⊙O是以原點為圓心,半徑為圓,則⊙O的“整點直線”共有()條A.7 B.8 C.9 D.108.如表記錄了甲、乙、丙、丁四名跳高運動員最近幾次選拔賽成績的平均數(shù)與方差:甲乙丙丁平均數(shù)(cm)185180185180方差3.63.67.48.1根據(jù)表數(shù)據(jù),從中選擇一名成績好且發(fā)揮穩(wěn)定的參加比賽,應(yīng)該選擇()A.甲 B.乙 C.丙 D.丁9.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°10.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉(zhuǎn)180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,反比例函數(shù)(x>0)的圖象與矩形OABC的邊長AB、BC分別交于點E、F且AE=BE,則△OEF的面積的值為.12.已知⊙O的面積為9πcm2,若點O到直線L的距離為πcm,則直線l與⊙O的位置關(guān)系是_____.13.有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數(shù),從中任意抽出一張卡片,卡片上的數(shù)是3的倍數(shù)的概率是14.內(nèi)接于圓,設(shè),圓的半徑為,則所對的劣弧長為_____(用含的代數(shù)式表示).15.如圖,在矩形ABCD中,AD=3,將矩形ABCD繞點A逆時針旋轉(zhuǎn),得到矩形AEFG,點B的對應(yīng)點E落在CD上,且DE=EF,則AB的長為_____.16.如圖,在△ABC中,∠C=40°,CA=CB,則△ABC的外角∠ABD=°.17.在平面直角坐標(biāo)系的第一象限內(nèi),邊長為1的正方形ABCD的邊均平行于坐標(biāo)軸,A點的坐標(biāo)為(a,a),如圖,若曲線y=(x>0)與此正方形的邊有交點,則a的取值范圍是_______.三、解答題(共7小題,滿分69分)18.(10分)如圖,以AD為直徑的⊙O交AB于C點,BD的延長線交⊙O于E點,連CE交AD于F點,若AC=BC.(1)求證:;(2)若,求tan∠CED的值.19.(5分)計算:-2-2-+020.(8分)某商場同時購進甲、乙兩種商品共200件,其進價和售價如表,商品名稱甲乙進價(元/件)80100售價(元/件)160240設(shè)其中甲種商品購進x件,該商場售完這200件商品的總利潤為y元.(1)求y與x的函數(shù)關(guān)系式;(2)該商品計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎(chǔ)上,實際進貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進120件,若商場保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設(shè)計出使該商場獲得最大利潤的進貨方案.21.(10分)閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:設(shè)(其中均為整數(shù)),則有.∴.這樣小明就找到了一種把部分的式子化為平方式的方法.請你仿照小明的方法探索并解決下列問題:當(dāng)均為正整數(shù)時,若,用含m、n的式子分別表示,得=,=;(2)利用所探索的結(jié)論,找一組正整數(shù),填空:+=(+)2;(3)若,且均為正整數(shù),求的值.22.(10分)如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標(biāo)為t.(1)求拋物線的表達式;(2)設(shè)拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.①求S關(guān)于t的函數(shù)表達式;②求P點到直線BC的距離的最大值,并求出此時點P的坐標(biāo).23.(12分)已知△ABC中,D為AB邊上任意一點,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如圖1所示,當(dāng)α=60°時,求證:△DCE是等邊三角形;(2)如圖2所示,當(dāng)α=45°時,求證:=;(3)如圖3所示,當(dāng)α為任意銳角時,請直接寫出線段CE與DE的數(shù)量關(guān)系:=_____.24.(14分)服裝店準(zhǔn)備購進甲乙兩種服裝,甲種每件進價80元,售價120元;乙種每件進價60元,售價90元,計劃購進兩種服裝共100件,其中甲種服裝不少于65件.(1)若購進這100件服裝的費用不得超過7500,則甲種服裝最多購進多少件?(2)在(1)條件下,該服裝店在5月1日當(dāng)天對甲種服裝以每件優(yōu)惠a(0<a<20)元的價格進行優(yōu)惠促銷活動,乙種服裝價格不變,那么該服裝店應(yīng)如何調(diào)整進貨方案才能獲得最大利潤?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】

有旋轉(zhuǎn)的性質(zhì)得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結(jié)論.【題目詳解】把△IBE繞B順時針旋轉(zhuǎn)90°,使BI與AB重合,E旋轉(zhuǎn)到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當(dāng)∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【題目點撥】本題考查了勾股定理,利用了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關(guān)鍵.2、B【解題分析】

根據(jù)常見幾何體的展開圖即可得.【題目詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B【題目點撥】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關(guān)鍵.3、D【解題分析】

根據(jù)同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項的運算法則進行計算即可得出正確答案.【題目詳解】解:A.x4?x4=x4+4=x8≠x16,故該選項錯誤;B.(a3)2=a3×2=a6≠a5,故該選項錯誤;C.(ab2)3=a3b6≠ab6,故該選項錯誤;D.a(chǎn)+2a=(1+2)a=3a,故該選項正確;故選D.考點:1.同底數(shù)冪的乘法;2.積的乘方與冪的乘方;3.合并同類項.4、C【解題分析】

由△ABC與△DEF相似,相似比為2:3,根據(jù)相似三角形的性質(zhì),即可求得答案.【題目詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個三角形的面積比為4:1.故選C.【題目點撥】此題考查了相似三角形的性質(zhì).注意相似三角形的面積比等于相似比的平方.5、B【解題分析】分析:根據(jù)數(shù)量=,可知第一次買了千克,第二次買了,根據(jù)第二次恰好比第一次多買了0.5千克列方程即可.詳解:設(shè)早上葡萄的價格是x元/千克,由題意得,.故選B.點睛:本題考查了分式方程的實際應(yīng)用,解題的關(guān)鍵是讀懂題意,找出列方程所用到的等量關(guān)系.6、B【解題分析】

如圖所示,過O點作a的平行線d,根據(jù)平行線的性質(zhì)得到∠2=∠3,進而求出將木條c繞點O旋轉(zhuǎn)到與直線a平行時的最小旋轉(zhuǎn)角.【題目詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉(zhuǎn)角∠1+∠2=90°.故選B【題目點撥】本題主要考查圖形的旋轉(zhuǎn)與平行線,解題的關(guān)鍵是熟練掌握平行線的性質(zhì).7、D【解題分析】試題分析:根據(jù)圓的半徑可知:在圓上的整數(shù)點為(2,2)、(2,-2),(-2,-2),(-2,2)這四個點,經(jīng)過任意兩點的“整點直線”有6條,經(jīng)過其中的任意一點且圓相切的“整點直線”有4條,則合計共有10條.8、A【解題分析】

首先比較平均數(shù),平均數(shù)相同時選擇方差較小的運動員參加.【題目詳解】∵=>=,∴從甲和丙中選擇一人參加比賽,∵=<<,∴選擇甲參賽,故選A.【題目點撥】此題主要考查了平均數(shù)和方差的應(yīng)用,解題關(guān)鍵是明確平均數(shù)越高,成績越高,方差越小,成績越穩(wěn)定.9、C【解題分析】【分析】根據(jù)相似多邊形性質(zhì):對應(yīng)角相等.【題目詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【題目點撥】本題考核知識點:相似多邊形.解題關(guān)鍵點:理解相似多邊形性質(zhì).10、B【解題分析】

陰影部分的面積=三角形的面積-扇形的面積,根據(jù)面積公式計算即可.【題目詳解】由旋轉(zhuǎn)可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故答案選:B.【題目點撥】本題考查的知識點是旋轉(zhuǎn)的性質(zhì)及扇形面積的計算,解題的關(guān)鍵是熟練的掌握旋轉(zhuǎn)的性質(zhì)及扇形面積的計算.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】試題分析:如圖,連接OB.∵E、F是反比例函數(shù)(x>0)的圖象上的點,EA⊥x軸于A,F(xiàn)C⊥y軸于C,∴S△AOE=S△COF=×1=.∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中點.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.12、相離【解題分析】

設(shè)圓O的半徑是r,根據(jù)圓的面積公式求出半徑,再和點0到直線l的距離π比較即可.【題目詳解】設(shè)圓O的半徑是r,則πr2=9π,∴r=3,∵點0到直線l的距離為π,∵3<π,即:r<d,∴直線l與⊙O的位置關(guān)系是相離,故答案為:相離.【題目點撥】本題主要考查對直線與圓的位置關(guān)系的理解和掌握,解此題的關(guān)鍵是知道當(dāng)r<d時相離;當(dāng)r=d時相切;當(dāng)r>d時相交.13、.【解題分析】

分別求出從1到6的數(shù)中3的倍數(shù)的個數(shù),再根據(jù)概率公式解答即可.【題目詳解】有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數(shù),從中任意抽出一張卡片,共有6種結(jié)果,其中卡片上的數(shù)是3的倍數(shù)的有3和6兩種情況,所以從中任意抽出一張卡片,卡片上的數(shù)是3的倍數(shù)的概率是.故答案為【題目點撥】考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.14、或【解題分析】

分0°<x°≤90°、90°<x°≤180°兩種情況,根據(jù)圓周角定理求出∠DOC,根據(jù)弧長公式計算即可.【題目詳解】解:當(dāng)0°<x°≤90°時,如圖所示:連接OC,

由圓周角定理得,∠BOC=2∠A=2x°,

∴∠DOC=180°-2x°,

∴∠OBC所對的劣弧長=,

當(dāng)90°<x°≤180°時,同理可得,∠OBC所對的劣弧長=.

故答案為:或.【題目點撥】本題考查了三角形的外接圓與外心、弧長的計算,掌握弧長公式、圓周角定理是解題的關(guān)鍵.15、3【解題分析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)知AB=AE,在直角三角形ADE中根據(jù)勾股定理求得AE長即可得.【題目詳解】∵四邊形ABCD是矩形,∴∠D=90°,BC=AD=3,∵將矩形ABCD繞點A逆時針旋轉(zhuǎn)得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE==3,∴AB=3,故答案為3.【題目點撥】本題考查矩形的性質(zhì)和旋轉(zhuǎn)的性質(zhì),熟知旋轉(zhuǎn)前后哪些線段是相等的是解題的關(guān)鍵.16、110【解題分析】試題解析:解:∵∠C=40°,CA=CB,∴∠A=∠ABC=70°,∴∠ABD=∠A+∠C=110°.考點:等腰三角形的性質(zhì)、三角形外角的性質(zhì)點評:本題主要考查了等腰三角形的性質(zhì)、三角形外角的性質(zhì).等腰三角形的兩個底角相等;三角形的外角等于與它不相鄰的兩個內(nèi)角之和.17、【解題分析】

因為A點的坐標(biāo)為(a,a),則C(a﹣1,a﹣1),根據(jù)題意只要分別求出當(dāng)A點或C點在曲線上時a的值即可得到答案.【題目詳解】解:∵A點的坐標(biāo)為(a,a),∴C(a﹣1,a﹣1),當(dāng)C在雙曲線y=時,則a﹣1=,解得a=+1;當(dāng)A在雙曲線y=時,則a=,解得a=,∴a的取值范圍是≤a≤+1.故答案為≤a≤+1.【題目點撥】本題主要考查反比例函數(shù)與幾何圖形的綜合問題,解此題的關(guān)鍵在于根據(jù)題意找到關(guān)鍵點,然后將關(guān)鍵點的坐標(biāo)代入反比例函數(shù)求得確定值即可.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)tan∠CED=【解題分析】

(1)欲證明,只要證明即可;(2)由,可得,設(shè)FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,由,可得BD?BE=BC?BA,設(shè)AC=BC=x,則有,由此求出AC、CD即可解決問題.【題目詳解】(1)證明:如下圖,連接AE,∵AD是直徑,∴,∴DC⊥AB,∵AC=CB,∴DA=DB,∴∠CDA=∠CDB,∵,,∴∠BDC=∠EAC,∵∠AEC=∠ADC,∴∠EAC=∠AEC,∴;(2)解:如下圖,連接OC,∵AO=OD,AC=CB,∴OC∥BD,∴,∴,設(shè)FO=2a,OC=3a,則DF=a,DE=1.5a,AD=DB=6a,∵∠BAD=∠BEC,∠B=∠B,∴,∴BD?BE=BC?BA,設(shè)AC=BC=x,則有,∴,∴,∴,∴.【題目點撥】本題屬于圓的綜合題,涉及到三角形的相似,解直角三角形等相關(guān)考點,熟練掌握三角形相似的判定及解直角三角形等相關(guān)內(nèi)容是解決本題的關(guān)鍵.19、【解題分析】

直接利用負(fù)指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)和特殊角的銳角三角函數(shù)值分別化簡,再根據(jù)實數(shù)的運算法則即可求出答案.【題目詳解】解:原式=【題目點撥】本題考查了負(fù)指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)和特殊角的銳角三角函數(shù)值,熟記這些運算法則是解題的關(guān)鍵.20、(1)y=﹣60x+28000;(2)若售完這些商品,則商場可獲得的最大利潤是22000元;(3)商場應(yīng)購進甲商品120件,乙商品80件,獲利最大【解題分析】分析:(1)根據(jù)總利潤=(甲的售價-甲的進價)×購進甲的數(shù)量+(乙的售價-乙的進價)×購進乙的數(shù)量代入列關(guān)系式,并化簡即可;(2)根據(jù)總成本≤18000列不等式即可求出x的取值,再根據(jù)函數(shù)的增減性確定其最值問題;(3)把50<a<70分三種情況討論:一次項x的系數(shù)大于0、等于0、小于0,根據(jù)函數(shù)的增減性得出結(jié)論.詳解:(1)根據(jù)題意得:y=(160﹣80)x+(240﹣100)(200﹣x),=﹣60x+28000,則y與x的函數(shù)關(guān)系式為:y=﹣60x+28000;(2)80x+100(200﹣x)≤18000,解得:x≥100,∴至少要購進100件甲商品,y=﹣60x+28000,∵﹣60<0,∴y隨x的增大而減小,∴當(dāng)x=100時,y有最大值,y大=﹣60×100+28000=22000,∴若售完這些商品,則商場可獲得的最大利潤是22000元;(3)y=(160﹣80+a)x+(240﹣100)(200﹣x)(100≤x≤120),y=(a﹣60)x+28000,①當(dāng)50<a<60時,a﹣60<0,y隨x的增大而減小,∴當(dāng)x=100時,y有最大利潤,即商場應(yīng)購進甲商品100件,乙商品100件,獲利最大,②當(dāng)a=60時,a﹣60=0,y=28000,即商場應(yīng)購進甲商品的數(shù)量滿足100≤x≤120的整數(shù)件時,獲利最大,③當(dāng)60<a<70時,a﹣60>0,y隨x的增大而增大,∴當(dāng)x=120時,y有最大利潤,即商場應(yīng)購進甲商品120件,乙商品80件,獲利最大.點睛:本題是一次函數(shù)和一元一次不等式的綜合應(yīng)用,屬于銷售利潤問題,在此類題中,要明確售價、進價、利潤的關(guān)系式:單件利潤=售價-進價,總利潤=單個利潤×數(shù)量;認(rèn)真讀題,弄清題中的每一個條件;對于最值問題,可利用一次函數(shù)的增減性來解決:形如y=kx+b中,當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減?。?1、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.【解題分析】

(1)∵,∴,∴a=m2+3n2,b=2mn.故答案為m2+3n2,2mn.(2)設(shè)m=1,n=2,∴a=m2+3n2=1,b=2mn=2.故答案為1,2,1,2(答案不唯一).(3)由題意,得a=m2+3n2,b=2mn.∵2=2mn,且m、n為正整數(shù),∴m=2,n=1或m=1,n=2,∴a=22+3×12=7,或a=12+3×22=1.22、(1)y=﹣x2+2x+1.(2)當(dāng)t=2時,點M的坐標(biāo)為(1,6);當(dāng)t≠2時,不存在,理由見解析;(1)y=﹣x+1;P點到直線BC的距離的最大值為,此時點P的坐標(biāo)為(,).【解題分析】【分析】(1)由點A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達式;(2)連接PC,交拋物線對稱軸l于點E,由點A、B的坐標(biāo)可得出對稱軸l為直線x=1,分t=2和t≠2兩種情況考慮:當(dāng)t=2時,由拋物線的對稱性可得出此時存在點M,使得四邊形CDPM是平行四邊形,再根據(jù)點C的坐標(biāo)利用平行四邊形的性質(zhì)可求出點P、M的坐標(biāo);當(dāng)t≠2時,不存在,利用平行四邊形對角線互相平分結(jié)合CE≠PE可得出此時不存在符合題意的點M;(1)①過點P作PF∥y軸,交BC于點F,由點B、C的坐標(biāo)利用待定系數(shù)法可求出直線BC的解析式,根據(jù)點P的坐標(biāo)可得出點F的坐標(biāo),進而可得出PF的長度,再由三角形的面積公式即可求出S關(guān)于t的函數(shù)表達式;②利用二次函數(shù)的性質(zhì)找出S的最大值,利用勾股定理可求出線段BC的長度,利用面積法可求出P點到直線BC的距離的最大值,再找出此時點P的坐標(biāo)即可得出結(jié)論.【題目詳解】(1)將A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴拋物線的表達式為y=﹣x2+2x+1;(2)在圖1中,連接PC,交拋物線對稱軸l于點E,∵拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(1,0)兩點,∴拋物線的對稱軸為直線x=1,當(dāng)t=2時,點C、P關(guān)于直線l對稱,此時存在點M,使得四邊形CDPM是平行四邊形,∵拋物線的表達式為y=﹣x2+2x+1,∴點C的坐標(biāo)為(0,1),點P的坐標(biāo)為(2,1),∴點M的坐標(biāo)為(1,6);當(dāng)t≠2時,不存在,理由如下:若四邊形CDPM是平行四邊形,則CE=PE,∵點C的橫坐標(biāo)為0,點E的橫坐標(biāo)為0,∴點P的橫坐標(biāo)t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在圖2中,過點P作PF∥y軸,交BC于點F.設(shè)直線BC的解析式為y=mx+n(m≠0),將B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直線BC的解析式為y=﹣x+1,∵點P的坐標(biāo)為(t,﹣t2+2t+1),∴點F的坐標(biāo)為(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF?OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴當(dāng)t=時,S取最大值,最大值為.∵點B的坐標(biāo)為(1,0),點C的坐標(biāo)為(0,1),∴線段BC=,∴P點到直線BC的距離的最大值為,此時點P的坐標(biāo)為(,).【題目點撥】本題考查了待定系數(shù)法求一次(二次)函數(shù)解析式、平行四邊形的判定與性質(zhì)、三角形的面積、一次(二次)函數(shù)圖象上點的坐標(biāo)特征以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)由點的坐標(biāo),利用待定系數(shù)法求出拋物線表達式;(2)分t=2和t≠2兩種情況考慮;(1)①利用三角形的面積公式找出S關(guān)于t的函數(shù)表達式;②利用二次函數(shù)的性質(zhì)結(jié)合面積法求出P點到直線BC的距離的最大值.23、1【解題分析】試題分析:(1)證明△CFD≌△DAE即可解決問題.(2)如圖2中,作FG⊥AC于G.只要證明△CFD∽△DAE,推出=,再證明CF=AD即可.(3)證明EC=ED即可解決問題.試題解析:(1)證明:如圖1中,∵∠ABC=∠ACB=60°,∴△ABC是等邊三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等邊三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論