2024屆浙江省寧波地區(qū)重點達標名校中考數(shù)學全真模擬試題含解析_第1頁
2024屆浙江省寧波地區(qū)重點達標名校中考數(shù)學全真模擬試題含解析_第2頁
2024屆浙江省寧波地區(qū)重點達標名校中考數(shù)學全真模擬試題含解析_第3頁
2024屆浙江省寧波地區(qū)重點達標名校中考數(shù)學全真模擬試題含解析_第4頁
2024屆浙江省寧波地區(qū)重點達標名校中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆浙江省寧波地區(qū)重點達標名校中考數(shù)學全真模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.把圖中的五角星圖案,繞著它的中心點O進行旋轉(zhuǎn),若旋轉(zhuǎn)后與自身重合,則至少旋轉(zhuǎn)()A.36° B.45° C.72° D.90°2.如果解關(guān)于x的分式方程時出現(xiàn)增根,那么m的值為A.-2 B.2 C.4 D.-43.已知拋物線y=x2+bx+c的對稱軸為x=2,若關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內(nèi)有兩個相等的實數(shù)根,則c的取值范圍是(

)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=44.如圖,動點P從(0,3)出發(fā),沿所示方向運動,每當碰到矩形的邊時反彈,反彈時反射角等于入射角.當點P第2018次碰到矩形的邊時,點P的坐標為()A.(1,4) B.(7,4) C.(6,4) D.(8,3)5.下列四個式子中,正確的是()A.=±9 B.﹣=6 C.()2=5 D.=46.如圖,在?ABCD中,AB=2,BC=1.以點C為圓心,適當長為半徑畫弧,交BC于點P,交CD于點Q,再分別以點P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點N,射線CN交BA的延長線于點E,則AE的長是()A. B.1 C. D.7.某校對初中學生開展的四項課外活動進行了一次抽樣調(diào)查(每人只參加其中的一項活動),調(diào)查結(jié)果如圖所示,根據(jù)圖形所提供的樣本數(shù)據(jù),可得學生參加科技活動的頻率是()A.0.15 B.0.2 C.0.25 D.0.38.如圖,下列各數(shù)中,數(shù)軸上點A表示的可能是()A.4的算術(shù)平方根 B.4的立方根 C.8的算術(shù)平方根 D.8的立方根9.﹣18的倒數(shù)是()A.18 B.﹣18 C.- D.10.下列各運算中,計算正確的是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.(11·湖州)如圖,已知A、B是反比例函數(shù)(k>0,x<0)圖象上的兩點,BC∥x軸,交y軸于點C.動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C.過P作PM⊥x軸,PN⊥y軸,垂足分別為M、N.設(shè)四邊形OMPN的面積為S,P點運動時間為t,則S關(guān)于t的函數(shù)圖象大致為12.小明把一副含45°,30°的直角三角板如圖擺放,其中∠C=∠F=90°,∠A=45°,∠D=30°,則∠α+∠β等于_____.13.如圖,△ABC中,AD是中線,AE是角平分線,CF⊥AE于F,AB=10,AC=6,則DF的長為__.14.如圖,一扇形紙扇完全打開后,外側(cè)兩竹條AB和AC的夾角為120°,AB長為25cm,貼紙部分的寬BD為15cm,若紙扇兩面貼紙,則貼紙的面積為_____.(結(jié)果保留π)15.已知線段厘米,厘米,線段c是線段a和線段b的比例中項,線段c的長度等于________厘米.16.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.17.如圖,、分別為△ABC的邊、延長線上的點,且DE∥BC.如果,CE=16,那么AE的長為_______三、解答題(共7小題,滿分69分)18.(10分)閱讀材料,解答問題.材料:“小聰設(shè)計的一個電子游戲是:一電子跳蚤從這P1(﹣3,9)開始,按點的橫坐標依次增加1的規(guī)律,在拋物線y=x2上向右跳動,得到點P2、P3、P4、P5…(如圖1所示).過P1、P2、P3分別作P1H1、P2H2、P3H3垂直于x軸,垂足為H1、H2、H3,則S△P1P2P3=S梯形P1H1H3P3﹣S梯形P1H1H2P2﹣S梯形P2H2H3P3=(9+1)×2﹣(9+4)×1﹣(4+1)×1,即△P1P2P3的面積為1.”問題:(1)求四邊形P1P2P3P4和P2P3P4P5的面積(要求:寫出其中一個四邊形面積的求解過程,另一個直接寫出答案);(2)猜想四邊形Pn﹣1PnPn+1Pn+2的面積,并說明理由(利用圖2);(3)若將拋物線y=x2改為拋物線y=x2+bx+c,其它條件不變,猜想四邊形Pn﹣1PnPn+1Pn+2的面積(直接寫出答案).19.(5分)水龍頭關(guān)閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據(jù)試驗數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時間t(h)的函數(shù)關(guān)系圖象,請結(jié)合圖象解答下列問題:容器內(nèi)原有水多少?求W與t之間的函數(shù)關(guān)系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?圖①圖②20.(8分)在平面直角坐標系xOy中,一次函數(shù)的圖象與y軸交于點,與反比例函數(shù)

的圖象交于點.求反比例函數(shù)的表達式和一次函數(shù)表達式;若點C是y軸上一點,且,直接寫出點C的坐標.21.(10分)在如圖的正方形網(wǎng)格中,每一個小正方形的邊長均為1.格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(﹣2,0),(﹣3,3).(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標系,寫出點B的坐標;(2)把△ABC繞坐標原點O順時針旋轉(zhuǎn)90°得到△A1B1C1,畫出△A1B1C1,寫出點B1的坐標;(3)以坐標原點O為位似中心,相似比為2,把△A1B1C1放大為原來的2倍,得到△A2B2C2畫出△A2B2C2,使它與△AB1C1在位似中心的同側(cè);請在x軸上求作一點P,使△PBB1的周長最小,并寫出點P的坐標.22.(10分)如圖,正方形ABCD中,E,F(xiàn)分別為BC,CD上的點,且AE⊥BF,垂足為G.(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長.23.(12分)如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且A(-1,0),B(4,0),∠ACB=90°.(1)求過A、B、C三點的拋物線解析式;(2)設(shè)拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標;(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標;若不存在,請說明理由.圖1備用圖24.(14分)如圖,在平面直角坐標系xOy中,函數(shù)()的圖象經(jīng)過點,AB⊥x軸于點B,點C與點A關(guān)于原點O對稱,CD⊥x軸于點D,△ABD的面積為8.(1)求m,n的值;(2)若直線(k≠0)經(jīng)過點C,且與x軸,y軸的交點分別為點E,F(xiàn),當時,求點F的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】分析:五角星能被從中心發(fā)出的射線平分成相等的5部分,再由一個周角是360°即可求出最小的旋轉(zhuǎn)角度.詳解:五角星可以被中心發(fā)出的射線平分成5部分,那么最小的旋轉(zhuǎn)角度為:360°÷5=72°.故選C.點睛:本題考查了旋轉(zhuǎn)對稱圖形的概念:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角.2、D【解題分析】

,去分母,方程兩邊同時乘以(x﹣1),得:m+1x=x﹣1,由分母可知,分式方程的增根可能是1.當x=1時,m+4=1﹣1,m=﹣4,故選D.3、D【解題分析】解:由對稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時,y=c+5,x=3時,y=c﹣3,關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實數(shù)根,當△=0時,即c=4,此時x=2,滿足題意.當△>0時,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當c=﹣5時,此時方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當c=3時,此時方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時滿足題意,故﹣5<c≤3或c=4,故選D.點睛:本題主要考查二次函數(shù)與一元二次方程的關(guān)系.理解二次函數(shù)與一元二次方程之間的關(guān)系是解題的關(guān)鍵.4、B【解題分析】如圖,經(jīng)過6次反彈后動點回到出發(fā)點(0,3),∵2018÷6=336…2,∴當點P第2018次碰到矩形的邊時為第336個循環(huán)組的第2次反彈,點P的坐標為(7,4).故選C.5、D【解題分析】

A、表示81的算術(shù)平方根;B、先算-6的平方,然后再求?的值;C、利用完全平方公式計算即可;D、=.【題目詳解】A、=9,故A錯誤;B、-=?=-6,故B錯誤;C、()2=2+2+3=5+2,故C錯誤;D、==4,故D正確.故選D.【題目點撥】本題主要考查的是實數(shù)的運算,掌握算術(shù)平方根、平方根和二次根式的性質(zhì)以及完全平方公式是解題的關(guān)鍵.6、B【解題分析】分析:只要證明BE=BC即可解決問題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關(guān)鍵.7、B【解題分析】讀圖可知:參加課外活動的人數(shù)共有(15+30+20+35)=100人,其中參加科技活動的有20人,所以參加科技活動的頻率是=0.2,故選B.8、C【解題分析】

解:由題意可知4的算術(shù)平方根是2,4的立方根是<2,8的算術(shù)平方根是,2<<3,8的立方根是2,

故根據(jù)數(shù)軸可知,

故選C9、C【解題分析】

根據(jù)乘積為1的兩個數(shù)互為倒數(shù),可得一個數(shù)的倒數(shù).【題目詳解】∵-18=1,∴﹣18的倒數(shù)是,故選C.【題目點撥】本題考查了倒數(shù),分子分母交換位置是求一個數(shù)的倒數(shù)的關(guān)鍵.10、D【解題分析】

利用同底數(shù)冪的除法法則、同底數(shù)冪的乘法法則、冪的乘方法則以及完全平方公式即可判斷.【題目詳解】A、,該選項錯誤;B、,該選項錯誤;C、,該選項錯誤;D、,該選項正確;故選:D.【題目點撥】本題考查了同底數(shù)冪的乘法、除法法則,冪的乘方法則以及完全平方公式,正確理解法則是關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、A【解題分析】試題分析:①當點P在OA上運動時,OP=t,S=OM?PM=tcosα?tsinα,α角度固定,因此S是以y軸為對稱軸的二次函數(shù),開口向上;②當點P在AB上運動時,設(shè)P點坐標為(x,y),則S=xy=k,為定值,故B、D選項錯誤;③當點P在BC上運動時,S隨t的增大而逐漸減小,故C選項錯誤.故選A.考點:1.反比例函數(shù)綜合題;2.動點問題的函數(shù)圖象.12、210°【解題分析】

根據(jù)三角形內(nèi)角和定理得到∠B=45°,∠E=60°,根據(jù)三角形的外角的性質(zhì)計算即可.【題目詳解】解:如圖:∵∠C=∠F=90°,∠A=45°,∠D=30°,∴∠B=45°,∠E=60°,∴∠2+∠3=120°,∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,故答案為:210°.【題目點撥】本題考查的是三角形的外角的性質(zhì)、三角形內(nèi)角和定理,掌握三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.13、1【解題分析】

試題分析:如圖,延長CF交AB于點G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵點D是BC中點,∴DF是△CBG的中位線.∴DF=BG=(AB﹣AG)=(AB﹣AC)=1.14、πcm1.【解題分析】

求出AD,先分別求出兩個扇形的面積,再求出答案即可.【題目詳解】解:∵AB長為15cm,貼紙部分的寬BD為15cm,∴AD=10cm,∴貼紙的面積為S=S扇形ABC﹣S扇形ADE=(cm1),故答案為πcm1.【題目點撥】本題考查了扇形的面積計算,能熟記扇形的面積公式是解此題的關(guān)鍵.15、1【解題分析】

根據(jù)比例中項的定義,列出比例式即可得出中項,注意線段不能為負.【題目詳解】∵線段c是線段a和線段b的比例中項,∴,解得(線段是正數(shù),負值舍去),∴,故答案為:1.【題目點撥】本題考查比例線段、比例中項等知識,比例中項的平方等于兩條線段的乘積,熟練掌握基本概念是解題關(guān)鍵.16、(﹣,1)【解題分析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,坐標與圖形的性質(zhì),解題的關(guān)鍵是學會添加常用的輔助線,構(gòu)造全等三角形解決問題,屬于中考常考題型.注意:距離都是非負數(shù),而坐標可以是負數(shù),在由距離求坐標時,需要加上恰當?shù)姆?17、1【解題分析】

根據(jù)DE∥BC,得到,再代入AC=11-AE,則可求AE長.【題目詳解】∵DE∥BC,∴.∵,CE=11,∴,解得AE=1.故答案為1.【題目點撥】本題主要考查相似三角形的判定和性質(zhì),正確寫出比例式是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)2,2;(2)2,理由見解析;(3)2.【解題分析】

(1)作P5H5垂直于x軸,垂足為H5,把四邊形P1P2P3P2和四邊形P2P3P2P5的轉(zhuǎn)化為SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2和SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3來求解;(2)(3)由圖可知,Pn﹣1、Pn、Pn+1、Pn+2的橫坐標為n﹣5,n﹣2,n﹣3,n﹣2,代入二次函數(shù)解析式,可得Pn﹣1、Pn、Pn+1、Pn+2的縱坐標為(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,將四邊形面積轉(zhuǎn)化為S四邊形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2來解答.【題目詳解】(1)作P5H5垂直于x軸,垂足為H5,由圖可知SP1P2P3P2=S△OP1H1﹣S△OP3H3﹣S梯形P2H2H3P3﹣S梯形P1H1H2P2==2,SP2P3P2P5=S梯形P5H5H2P2﹣S△P5H5O﹣S△OH3P3﹣S梯形P2H2H3P3==2;(2)作Pn﹣1Hn﹣1、PnHn、Pn+1Hn+1、Pn+2Hn+2垂直于x軸,垂足為Hn﹣1、Hn、Hn+1、Hn+2,由圖可知Pn﹣1、Pn、Pn+1、Pn+2的橫坐標為n﹣5,n﹣2,n﹣3,n﹣2,代入二次函數(shù)解析式,可得Pn﹣1、Pn、Pn+1、Pn+2的縱坐標為(n﹣5)2,(n﹣2)2,(n﹣3)2,(n﹣2)2,四邊形Pn﹣1PnPn+1Pn+2的面積為S四邊形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2==2;(3)S四邊形Pn﹣1PnPn+1Pn+2=S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣5Hn﹣5Hn﹣2Pn﹣2﹣S梯形Pn﹣2Hn﹣2Hn﹣3Pn﹣3﹣S梯形Pn﹣3Hn﹣3Hn﹣2Pn﹣2=-=2.【題目點撥】本題是一道二次函數(shù)的綜合題,考查了根據(jù)函數(shù)坐標特點求圖形面積的知識,解答時要注意,前一小題為后面的題提供思路,由于計算量極大,要仔細計算,以免出錯,19、(1)0.3L;(2)在這種滴水狀態(tài)下一天的滴水量為9.6L.【解題分析】

(1)根據(jù)點的實際意義可得;(2)設(shè)與之間的函數(shù)關(guān)系式為,待定系數(shù)法求解可得,計算出時的值,再減去容器內(nèi)原有的水量即可.【題目詳解】(1)由圖象可知,容器內(nèi)原有水0.3L.(2)由圖象可知W與t之間的函數(shù)圖象經(jīng)過點(0,0.3),故設(shè)函數(shù)關(guān)系式為W=kt+0.3.又因為函數(shù)圖象經(jīng)過點(1.5,0.9),代入函數(shù)關(guān)系式,得1.5k+0.3=0.9,解得k=0.4.故W與t之間的函數(shù)關(guān)系式為W=0.4t+0.3.當t=24時,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在這種滴水狀態(tài)下一天的滴水量為9.6L.【題目點撥】本題考查了一次函數(shù)的應(yīng)用,關(guān)鍵是利用待定系數(shù)法正確求出一次函數(shù)的解析式.20、(1)y=,y=-x+1;(2)C(0,3+1)或C(0,1-3).【解題分析】

(1)依據(jù)一次函數(shù)的圖象與軸交于點,與反比例函數(shù)的圖象交于點,即可得到反比例函數(shù)的表達式和一次函數(shù)表達式;(2)由,可得:,即可得到,再根據(jù),可得或,即可得出點的坐標.【題目詳解】(1)∵雙曲線過,將代入,解得:.∴所求反比例函數(shù)表達式為:.∵點,點在直線上,∴,,∴,∴所求一次函數(shù)表達式為.(2)由,可得:,∴.又∵,∴或,∴,或,.【題目點撥】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)的解析式和反比例函數(shù)與一次函數(shù)的交點問題.此題難度適中,注意掌握數(shù)形結(jié)合思想的應(yīng)用.21、(1)(﹣4,1);(2)(1,4);(3)見解析;(4)P(﹣3,0).【解題分析】

(1)先建立平面直角坐標系,再確定B的坐標;(2)根據(jù)旋轉(zhuǎn)要求畫出△A1B1C1,再寫出點B1的坐標;(3)根據(jù)位似的要求,作出△A2B2C2;(4)作點B關(guān)于x軸的對稱點B',連接B'B1,交x軸于點P,則點P即為所求.【題目詳解】解:(1)如圖所示,點B的坐標為(﹣4,1);(2)如圖,△A1B1C1即為所求,點B1的坐標(1,4);(3)如圖,△A2B2C2即為所求;(4)如圖,作點B關(guān)于x軸的對稱點B',連接B'B1,交x軸于點P,則點P即為所求,P(﹣3,0).【題目點撥】本題考核知識點:位似,軸對稱,旋轉(zhuǎn).解題關(guān)鍵點:理解位似,軸對稱,旋轉(zhuǎn)的意義.22、(1)見解析;(2)正方形的邊長為.【解題分析】

(1)由正方形的性質(zhì)得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA證得△ABE≌△BCF即可得出結(jié)論;(2)證出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG?AE,設(shè)EG=x,則AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出結(jié)果.【題目詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足為G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE與△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四邊形ABCD為正方形,∴∠ABC=90°,∵AE⊥BF,∴∠BGE=∠ABE=90°,∵∠BEG=∠AEB,∴△BGE∽△ABE,∴=,即:BE2=EG?AE,設(shè)EG=x,則AE=AG+EG=2+x,∴()2=x?(2+x),解得:x1=1,x2=﹣3(不合題意舍去),∴AE=3,∴AB===.【題目點撥】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理等知識,熟練掌握正方形的性質(zhì),證明三角形全等與相似是解題的關(guān)鍵.23、見解析【解題分析】分析:(1)根據(jù)求出點的坐標,用待定系數(shù)法即可求出拋物線的解析式.(2)分兩種情況進行討論即可.(3)存在.假設(shè)直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.分當平行四邊形是平行四邊形時,當平行四邊形AONM是平行四邊形時,當四邊形AMON為平行四邊形時,三種情況進行討論.詳解:(1)易證,得,∴OC=2,∴C(0,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論