版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年山西省陽泉市高一上數(shù)學(xué)期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12小題,共60分)1.已知偶函數(shù)在區(qū)間內(nèi)單調(diào)遞增,若,,,則的大小關(guān)系為()A. B.C. D.2.如圖所示,一個(gè)水平放置的平面圖形的直觀圖是一個(gè)底角為45°,腰和上底長(zhǎng)均為1的等腰梯形,則該平面圖形的面積等于()A. B.C. D.3.已知,則的值等于()A. B.C. D.4.已知正實(shí)數(shù)滿足,則最小值為A. B.C. D.5.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件6.函數(shù),則A. B.-1C.-5 D.7.對(duì),不等式恒成立,則a的取值范圍是()A. B.C.或 D.或8.已知x,,且,則A. B.C. D.9.已知,,,則,,的大小關(guān)系為()A. B.C. D.10.滿足不等式成立的的取值集合為()A.B.C.D.11.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B.C. D.12.已知集合,則中元素的個(gè)數(shù)為A.1 B.2C.3 D.4二、填空題(本大題共4小題,共20分)13.函數(shù)的圖象必過定點(diǎn)___________14.已知,若對(duì)一切實(shí)數(shù),均有,則___.15.正方體ABCD-A1B1C1D1中,二面角C1-AB-C平面角等于________16.已知函數(shù)的部分圖象如圖所示,則___________三、解答題(本大題共6小題,共70分)17.十九大指出中國(guó)的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃,2020年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備看,通過市場(chǎng)分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛)需另投入成本y(萬元),且由市場(chǎng)調(diào)研知,每輛車售價(jià)6萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完(1)求出2020年的利潤(rùn)S(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額減去成本)(2)當(dāng)2020年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn)18.已知是函數(shù)的零點(diǎn),.(Ⅰ)求實(shí)數(shù)的值;(Ⅱ)若不等式在上恒成立,求實(shí)數(shù)的取值范圍;(Ⅲ)若方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.19.化簡(jiǎn)與計(jì)算(1);(2).20.某公司結(jié)合公司的實(shí)際情況針對(duì)調(diào)休安排展開問卷調(diào)查,提出了,,三種放假方案,調(diào)查結(jié)果如下:支持方案支持方案支持方案35歲以下20408035歲以上(含35歲)101040(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個(gè)人,已知從“支持方案”的人中抽取了6人,求的值;(2)在“支持方案”的人中,用分層抽樣的方法抽取5人看作一個(gè)總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.21.已知關(guān)于x,y的方程C:(1)當(dāng)m為何值時(shí),方程C表示圓;(2)在(1)的條件下,若圓C與直線l:相交于M、N兩點(diǎn),且|MN|=,求m的值.22.甲乙兩人用兩顆質(zhì)地均勻的骰子(各面依次標(biāo)有數(shù)字1、2、3、4、5、6的正方體)做游戲,規(guī)則如下:若擲出的兩顆骰子點(diǎn)數(shù)之和為3的倍數(shù),則由原投擲人繼續(xù)投擲,否則由對(duì)方接著投擲.第一次由甲投擲(1)求第二次仍由甲投擲的概率;(2)求游戲前4次中乙投擲的次數(shù)為2的概率
參考答案一、選擇題(本大題共12小題,共60分)1、D【解析】先利用偶函數(shù)的對(duì)稱性判斷函數(shù)在區(qū)間內(nèi)單調(diào)遞減,結(jié)合偶函數(shù)定義得,再判斷,和的大小關(guān)系,根據(jù)單調(diào)性比較函數(shù)值的大小,即得結(jié)果.【詳解】偶函數(shù)的圖象關(guān)于y軸對(duì)稱,由在區(qū)間內(nèi)單調(diào)遞增可知,在區(qū)間內(nèi)單調(diào)遞減.,故,而,,即,故,由單調(diào)性知,即.故選:D.2、D【解析】根據(jù)斜二測(cè)畫法的規(guī)則,得出該平面圖象的特征,結(jié)合面積公式,即可求解.【詳解】由題意,根據(jù)斜二測(cè)畫法規(guī)則,可得該平面圖形是上底長(zhǎng)為,下底長(zhǎng)為,高為的直角梯形,所以計(jì)算得面積為.故選:D.3、B【解析】由分段函數(shù)的定義計(jì)算【詳解】,,所以故選:B4、A【解析】由題設(shè)條件得,,利用基本不等式求出最值【詳解】由已知,,所以當(dāng)且僅當(dāng)時(shí)等號(hào)成立,又,所以時(shí)取最小值故選A【點(diǎn)睛】本題考查據(jù)題設(shè)條件構(gòu)造可以利用基本不等式的形式,利用基本不等式求最值5、A【解析】由與互相推出的情況結(jié)合選項(xiàng)判斷出答案【詳解】,由可以推出,而不能推出則“”是“”的充分而不必要條件故選:A6、A【解析】f(x)=∴f()=,f[f()]=f()=.故答案為A點(diǎn)睛:由分段函數(shù)得f()=,由此能求出f[f()]的值7、A【解析】對(duì)討論,結(jié)合二次函數(shù)的圖象與性質(zhì),解不等式即可得到的取值范圍.【詳解】不等式對(duì)一切恒成立,當(dāng),即時(shí),恒成立,滿足題意;當(dāng)時(shí),要使不等式恒成立,需,即有,解得.綜上可得,的取值范圍為.故選:A.8、C【解析】原不等式變形為,由函數(shù)單調(diào)遞增,可得,利用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性逐一分析四個(gè)選項(xiàng)即可得答案【詳解】函數(shù)為增函數(shù),,即,可得,由指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性可得,B,D錯(cuò)誤,根據(jù)遞增可得C正確,故選C【點(diǎn)睛】本題考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)的單調(diào)性,是中檔題.函數(shù)單調(diào)性的應(yīng)用比較廣泛,是每年高考的重點(diǎn)和熱點(diǎn)內(nèi)容.歸納起來,常見的命題探究角度有:(1)求函數(shù)的值域或最值;(2)比較兩個(gè)函數(shù)值或兩個(gè)自變量的大小;(3)解函數(shù)不等式;(4)求參數(shù)的取值范圍或值9、B【解析】通過計(jì)算可知,,,從而得出,,的大小關(guān)系.【詳解】解:因?yàn)?,所以,,所?故選:B.10、A【解析】先求出一個(gè)周期內(nèi)不等式的解集,再結(jié)合余弦函數(shù)的周期性即可求解.【詳解】解:由得:當(dāng)時(shí),因?yàn)榈闹芷跒樗圆坏仁降慕饧癁楣蔬x:A.11、D【解析】根據(jù)基本初等函數(shù)的單調(diào)性及復(fù)合函數(shù)單調(diào)性求解.【詳解】當(dāng)時(shí),在上單調(diào)遞減,所以在區(qū)間上為增函數(shù);由指數(shù)函數(shù)單調(diào)性知在區(qū)間上單調(diào)遞增;由在區(qū)間上為增函數(shù),為增函數(shù),可知在區(qū)間上為增函數(shù);知在區(qū)間上為減函數(shù).故選:D12、A【解析】利用交集定義先求出A∩B,由此能求出A∩B中元素的個(gè)數(shù)【詳解】∵集合∴A∩B={3},∴A∩B中元素的個(gè)數(shù)為1故選A【點(diǎn)睛】本題考查交集中元素個(gè)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用二、填空題(本大題共4小題,共20分)13、【解析】f(x)=k(x-1)-ax-1,x=1時(shí),y=f(x)=-1,∴圖象必過定點(diǎn)(1,-1).14、【解析】列方程組解得參數(shù)a、b,得到解析式后,即可求得的值.【詳解】由對(duì)一切實(shí)數(shù),均有可知,即解之得則,滿足故故答案:15、45°【解析】解:如圖,設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,以DA為x軸,以DC為y軸,以DD1為z軸,建立空間直角坐標(biāo)系,則A(1,0,0),B(1,1,0),C1(0,1,1),∴=(0,1,0),=(-1,1,1),設(shè)面ABC1的法向量為=(x,y,z),∵?=0,?=0,∴y=0,-x+y+z=0,∴=(1,0,1),∵面ABC的法向量=(0,0,1),設(shè)二面角C1-AB-C的平面角為θ,∴cosθ=|cos<,>|=,∴θ=45°,答案為45°考點(diǎn):二面角的平面角點(diǎn)評(píng):本題考查二面角的平面角及求法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用16、【解析】由圖象可得最小正周期的值,進(jìn)而可得,又函數(shù)圖象過點(diǎn),利用即可求解.【詳解】解:由圖可知,因?yàn)椋?,解得,因?yàn)楹瘮?shù)的圖象過點(diǎn),所以,又,所以,故答案為:.三、解答題(本大題共6小題,共70分)17、(1)(2)100百輛時(shí),1300萬元【解析】(1)分和,由利潤(rùn)=銷售額減去成本求解;(2)由(1)的結(jié)果,利用二次函數(shù)和對(duì)勾函數(shù)的性質(zhì)求解.【小問1詳解】解:由題意得當(dāng),,當(dāng)時(shí),,所以;【小問2詳解】當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),由對(duì)勾函數(shù),當(dāng)時(shí),,時(shí),,時(shí),即2020年產(chǎn)量為100百輛時(shí),企業(yè)所獲利潤(rùn)最大,且最大利潤(rùn)為1300萬元18、(Ⅰ)1;(Ⅱ);(Ⅲ)【解析】Ⅰ利用是函數(shù)的零點(diǎn),代入解析式即可求實(shí)數(shù)的值;Ⅱ由不等式在上恒成立,利用參數(shù)分類法,轉(zhuǎn)化為二次函數(shù)求最值問題,即可求實(shí)數(shù)的取值范圍;Ⅲ原方程等價(jià)于,利用換元法,轉(zhuǎn)化為一元二次方程根的個(gè)數(shù)進(jìn)行求解即可【詳解】Ⅰ是函數(shù)的零點(diǎn),,得;Ⅱ,,則不等式在上恒成立,等價(jià)為,,同時(shí)除以,得,令,則,,,故的最小值為0,則,即實(shí)數(shù)k的取值范圍;Ⅲ原方程等價(jià)為,,兩邊同乘以得,此方程有三個(gè)不同的實(shí)數(shù)解,令,則,則,得或,當(dāng)時(shí),,得,當(dāng),要使方程有三個(gè)不同的實(shí)數(shù)解,則必須有有兩個(gè)解,則,得【點(diǎn)睛】本題主要考查函數(shù)與方程根的問題,利用換元法結(jié)合一元二次方程根的個(gè)數(shù),以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:①分離參數(shù)恒成立(即可)或恒成立(即可);②數(shù)形結(jié)合(圖象在上方即可);③討論最值或恒成立;④討論參數(shù),排除不合題意的參數(shù)范圍,篩選出符合題意的參數(shù)范圍.19、(1)(2)5【解析】(1)根據(jù)指數(shù)的運(yùn)算性質(zhì)計(jì)算即可;(2)根據(jù)對(duì)數(shù)的運(yùn)算法則計(jì)算即可.【小問1詳解】原式=.【小問2詳解】原式.20、(1)(2)【解析】(1)根據(jù)分層抽樣按比例抽取,列出方程,能求出n的值;(2)35歲以下有4人,35歲以上(含35歲)有1人.設(shè)將35歲以下的4人標(biāo)記為1,2,3,4,35歲以上(含35歲)的1人記為a,利用列舉法能求出恰好有1人在35歲以上(含35歲)的概率.【詳解】(1)根據(jù)分層抽樣按比例抽取,得:,解得.(2)35歲以下:(人),35歲以上(含35歲):(人)設(shè)將35歲以下的4人標(biāo)記為1,2,3,4,35歲以上(含35歲)的1人記為,,共10個(gè)樣本點(diǎn).設(shè):恰好有1人在35歲以上(含35歲),有4個(gè)樣本點(diǎn),故.【點(diǎn)睛】本題考查概率的求法,分層抽樣、古典概型、列舉法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.21、(1)m<5;(2)m=4【解析】(1)求出圓的標(biāo)準(zhǔn)方程形式,即可求出m的值;(2)利用半徑,弦長(zhǎng),弦心距的關(guān)系列方程求解即可【詳解】解:(1)方程C可化為,顯然只要5?m>0,即m<5時(shí),方程C表示圓;(2)因?yàn)閳AC的方程為,其中m<5,所以圓心C(1,2),半徑,則圓心C(1,2)到直線l:x+2y?4=0的距離為,因?yàn)閨MN|=,所以|MN|=,所以,解得m=4【點(diǎn)睛】本題主要考查直線和圓的位置關(guān)系的應(yīng)用,根據(jù)圓的標(biāo)準(zhǔn)方程求出圓心和半徑是解決本題的關(guān)鍵22、(1)(2)【解析】(1)由題意利用古典概型求概率的計(jì)算公式求得結(jié)果(2)游戲的前4次中乙投擲的次數(shù)為2,包含3種情況,根據(jù)獨(dú)立事件的乘法公式及互斥事件的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國(guó)手機(jī)鏡頭行業(yè)并購(gòu)重組擴(kuò)張戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)LED 驅(qū)動(dòng)芯片行業(yè)營(yíng)銷創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)北斗衛(wèi)星手表行業(yè)商業(yè)模式創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)中餐行業(yè)開拓第二增長(zhǎng)曲線戰(zhàn)略制定與實(shí)施研究報(bào)告
- 市政道路竣工驗(yàn)收質(zhì)量評(píng)估報(bào)告-定稿
- 建設(shè)項(xiàng)目環(huán)境保護(hù)設(shè)施竣工驗(yàn)收程序及說明-(空白表)
- 者樓鎮(zhèn)高洛小學(xué)文明禮儀實(shí)施方案
- 化纖高檔服裝項(xiàng)目可行性研究報(bào)告
- 醫(yī)療器械定期風(fēng)險(xiǎn)評(píng)價(jià)報(bào)告范文
- 2022-2027年中國(guó)血管舒緩素行業(yè)發(fā)展監(jiān)測(cè)及投資戰(zhàn)略咨詢報(bào)告
- 小學(xué)六年級(jí)數(shù)學(xué)100道題解分?jǐn)?shù)方程
- GB/T 17684-2008貴金屬及其合金術(shù)語
- 安全管理流程圖加強(qiáng)完善版
- 第一講-研發(fā)創(chuàng)新型企業(yè)需要IPD(下)徐驥課程-
- 2022年08月北京外交學(xué)院非事業(yè)編科研助理招聘14人高頻考點(diǎn)卷叁(3套)答案詳解篇
- 甲狀腺結(jié)節(jié)的超聲規(guī)范化診斷教學(xué)課件
- 職業(yè)健康監(jiān)護(hù)技術(shù)規(guī)范
- 安徽省白酒生產(chǎn)企業(yè)名錄395家
- 多媒體技術(shù)與應(yīng)用ppt課件(完整版)
- 2022年五年級(jí)數(shù)學(xué)興趣小組活動(dòng)記錄
- 閱讀題賒小雞
評(píng)論
0/150
提交評(píng)論