版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆湖南省古丈縣第一中學高一數(shù)學第一學期期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.函數(shù)的部分圖象如圖所示,將函數(shù)的圖象向左平移個單位長度后得到的圖象,則下列說法正確的是()A.函數(shù)為奇函數(shù)B.函數(shù)的最小正周期為C.函數(shù)的圖象的對稱軸為直線D.函數(shù)的單調(diào)遞增區(qū)間為2.定義在實數(shù)集上的奇函數(shù)恒滿足,且時,,則()A. B.C.1 D.3.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R).則“f(x)是偶函數(shù)“是“A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.如圖,在正方形ABCD中,E、F分別是BC、CD的中點,G是EF的中點,現(xiàn)在沿AE、AF及EF把這個正方形折成一個空間圖形,使B、C、D三點重合,重合后的點記為H,那么,在這個空間圖形中必有()A.所在平面 B.
所在平面C.所在平面 D.所在平面5.在,,中,最大的數(shù)為()A.a B.bC.c D.d6.設(shè)函數(shù)的定義域為.則“在上嚴格遞增”是“在上嚴格遞增”的()條件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要7.設(shè)函數(shù)與的圖象的交點為,,則所在的區(qū)間是A. B.C. D.8.“”是“冪函數(shù)為偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.設(shè)全集,集合,,則A.{4} B.{0,1,9,16}C.{0,9,16} D.{1,9,16}10.已知集合,,則等于()A. B.C. D.11.冪函數(shù),當時為減函數(shù),則實數(shù)的值為A.或2 B.C. D.12.函數(shù)是()A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.若,則_________.14.已知函數(shù)若互不相等,且,則的取值范圍是15.已知是定義在上的奇函數(shù),當時,,函數(shù)如果對,,使得,則實數(shù)m的取值范圍為______16.《九章算術(shù)》是我國古代數(shù)學成就的杰出代表作,其中"方田"章給出了計算弧田面積時所用的經(jīng)驗公式,即弧田面積(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦圍成,公式中“弦”指圓弧所對弦長,“矢”指圓弧頂?shù)较业木嚯x(等于半徑長與圓心到弦的距離之差),現(xiàn)有圓心角為2,半徑為1米的弧田,按照上述經(jīng)驗公式計算所得弧田面積是_________平方米.(結(jié)果保留兩位有效數(shù)字,參考數(shù)據(jù):,)三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知,且函數(shù).(1)判斷的奇偶性,并證明你的結(jié)論;(2)設(shè),對任意,總存在,使得g(x1)=h(x2)成立,求實數(shù)c的取值范圍.在以下①,②兩個條件中,選擇一個條件,將上面的題目補充完整,先求出a,b的值,并解答本題.①函數(shù)在定義域上為偶函數(shù);②函數(shù)在上的值域為;18.已知圓和定點,由圓外一動點向圓引切線,切點為,且滿足.(1)求證:動點在定直線上;(2)求線段長的最小值并寫出此時點的坐標.19.已知扇形的圓心角是,半徑為,弧長為.(1)若,,求扇形的弧長;(2)若扇形的周長為,當扇形的圓心角為多少弧度時,這個扇形的面積最大,并求出此時扇形面積的最大值.20.在單位圓中,已知第二象限角的終邊與單位圓的交點為,若.(1)求、、的值;(2)分別求、、的值.21.已知函數(shù)是奇函數(shù),且;(1)判斷函數(shù)在區(qū)間的單調(diào)性,并給予證明;(2)已知函數(shù)(且),已知在的最大值為2,求的值22.若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù)(1)求事件“”的概率;(2)求事件“方程有實數(shù)根”的概率
參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】根據(jù)圖象得到函數(shù)解析式,將函數(shù)的圖象向左平移個單位長度后得到的圖象,可得解析式,分別根據(jù)正弦函數(shù)的奇偶性、單調(diào)性、周期性與對稱性,對選項中的結(jié)論判斷,從而可得結(jié)論.【詳解】由圖象可知,,∴,則.將點的坐標代入中,整理得,∴,即;,∴,∴.∵將函數(shù)的圖象向左平移個單位長度后得到的圖象,∴.,∴既不是奇函數(shù)也不是偶函數(shù),故A錯誤;∴的最小正周期,故B不正確.令,解得,則函數(shù)圖像的對稱軸為直線.故C錯誤;由,可得,∴函數(shù)的單調(diào)遞增區(qū)間為.故D正確;故選:D.【點睛】關(guān)鍵點睛:本題主要考查三角函數(shù)的圖象與性質(zhì),熟記正弦函數(shù)的奇偶性、單調(diào)區(qū)間、最小正周期與對稱軸是解決本題的關(guān)鍵.2、B【解析】根據(jù)函數(shù)奇偶性和等量關(guān)系,求出函數(shù)是周期為4的周期函數(shù),利用函數(shù)的周期性進行轉(zhuǎn)化求解即可【詳解】解:奇函數(shù)恒滿足,,即,則,即,即是周期為4的周期函數(shù),所以,故選:B3、B【解析】利用必要不充分條件的概念,結(jié)合三角函數(shù)知識可得答案.【詳解】若φ=π2,則f(x)=Asin(ωx+π若f(x)=Asin(ωx+φ)為偶函數(shù),則φ=kπ+π2,k∈Z,所以“f(x)是偶函數(shù)“是“φ=π故選:B【點睛】關(guān)鍵點點睛:掌握必要不充分條件的概念是解題關(guān)鍵.4、B【解析】本題為折疊問題,分析折疊前與折疊后位置關(guān)系、幾何量的變與不變,可得HA、HE、HF三者相互垂直,根據(jù)線面垂直的判定定理,可判斷AH與平面HEF的垂直【詳解】根據(jù)折疊前、后AH⊥HE,AH⊥HF不變,∴AH⊥平面EFH,B正確;∵過A只有一條直線與平面EFH垂直,∴A不正確;∵AG⊥EF,EF⊥AH,∴EF⊥平面HAG,∴平面HAG⊥AEF,過H作直線垂直于平面AEF,一定在平面HAG內(nèi),∴C不正確;∵HG不垂直于AG,∴HG⊥平面AEF不正確,D不正確故選B【點睛】本題考查直線與平面垂直的判定,一般利用線線?線面?面面,垂直關(guān)系的相互轉(zhuǎn)化判斷5、B【解析】逐一判斷各數(shù)的范圍,即找到最大的數(shù).【詳解】因為,所以;;;.故最大.故選:B.【點睛】本題考查了根據(jù)實數(shù)范圍比較實數(shù)大小,屬于基礎(chǔ)題.6、A【解析】利用特例法、函數(shù)單調(diào)性的定義結(jié)合充分條件、必要條件的定義判斷可得出合適的選項.【詳解】若函數(shù)在上嚴格遞增,對任意的、且,,由不等式的性質(zhì)可得,即,所以,在上嚴格遞增,所以,“在上嚴格遞增”“在上嚴格遞增”;若在上嚴格遞增,不妨取,則函數(shù)在上嚴格遞增,但函數(shù)在上嚴格遞減,所以,“在上嚴格遞增”“在上嚴格遞增”.因此,“在上嚴格遞增”是“在上嚴格遞增”的充分不必要條件.故選:A.7、A【解析】設(shè),則,有零點的判斷定理可得函數(shù)的零點在區(qū)間內(nèi),即所在的區(qū)間是.選A8、C【解析】根據(jù)函數(shù)的奇偶性的定義和冪函數(shù)的概念,結(jié)合充分條件、必要條件的判定方法,即可求解.詳解】由,即,解得或,當時,,此時函數(shù)的定義域為關(guān)于原點對稱,且,所以函數(shù)為偶函數(shù);當時,,此時函數(shù)的定義域為關(guān)于原點對稱,且,所以函數(shù)為偶函數(shù),所以充分性成立;反之:冪函數(shù),則滿足,解得或或,當時,,此時函數(shù)為偶函數(shù);當時,,此時函數(shù)為偶函數(shù),當時,,此時函數(shù)為奇函數(shù)函數(shù),綜上可得,實數(shù)或,即必要性成立,所以“”是“冪函數(shù)為偶函數(shù)”的充要條件.故選:C.9、B【解析】根據(jù)集合的補集和交集的概念得到結(jié)果即可.【詳解】全集,集合,,;,故答案為B.【點睛】高考對集合知識的考查要求較低,均是以小題的形式進行考查,一般難度不大,要求考生熟練掌握與集合有關(guān)的基礎(chǔ)知識.縱觀近幾年的高考試題,主要考查以下兩個方面:一是考查具體集合的關(guān)系判斷和集合的運算.解決這類問題的關(guān)鍵在于正確理解集合中元素所具有屬性的含義,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的關(guān)系判斷以及運算10、A【解析】先解不等式,再由交集的定義求解即可【詳解】由題,因為,所以,即,所以,故選:A【點睛】本題考查集合的交集運算,考查利用指數(shù)函數(shù)單調(diào)性解不等式11、C【解析】∵為冪函數(shù),∴,即.解得:或.當時,,在上為減函數(shù);當時,,在上為常數(shù)函數(shù)(舍去),∴使冪函數(shù)為上的減函數(shù)的實數(shù)的值.故選C.考點:冪函數(shù)的性質(zhì).12、A【解析】由題可得,根據(jù)正弦函數(shù)的性質(zhì)即得.【詳解】∵函數(shù),∴函數(shù)為最小正周期為的奇函數(shù).故選:A.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、##【解析】依題意利用誘導公式及二倍角公式計算可得;【詳解】解:因為,所以.故答案為:.14、(10,12)【解析】不妨設(shè)a<b<c,作出f(x)的圖象,如圖所示:由圖象可知0<a<1<b<10<c<12,由f(a)=f(b)得|lga|=|lgb|,即?lga=lgb,∴l(xiāng)gab=0,則ab=1,∴abc=c,∴abc的取值范圍是(10,12),15、【解析】先求出時,,,然后解不等式,即可求解,得到答案【詳解】由題意,可知時,為增函數(shù),所以,又是上的奇函數(shù),所以時,,又由在上的最大值為,所以,,使得,所以.故答案為【點睛】本題主要考查了函數(shù)的奇偶性的判定與應(yīng)用,以及函數(shù)的最值的應(yīng)用,其中解答中轉(zhuǎn)化為是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,推理與運算能力,屬于基礎(chǔ)題.16、【解析】由題設(shè)可得“弦”為,“矢”為,結(jié)合弧田面積公式求面積即可.【詳解】由題設(shè),“弦”為,“矢”為,所以所得弧田面積是.故答案為:.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)奇函數(shù),證明見解析;(2).【解析】若選擇①利用偶函數(shù)的性質(zhì)求,若選擇條件②,利用函數(shù)的單調(diào)性,求函數(shù)的值域,比較后得到值;(1)由①或②得,利用奇偶函數(shù)的定義判斷;(2)根據(jù)條件轉(zhuǎn)化為的值域是的值域的子集,求實數(shù)的取值范圍.【詳解】若選擇①由,在上是偶函數(shù),則,且,所以a=2,b=0;②當a>1時,在上單調(diào)遞增,則有,解得a=2,b=0;由①或②得,(1)為奇函數(shù)證明:的定義域為R.因為,則為奇函數(shù)(2)當x>0時,,因為,當且僅當即x=1時等號成立,所以;當x<0時,因為為奇函數(shù),所以;當x=0時,;所以的值域為[,],,,函數(shù)是單調(diào)遞減函數(shù),所以函數(shù)的值域是對任意的,總存在,使得g(x1)=h(x2)成立,,,得.【點睛】結(jié)論點睛:本題考查不等式的恒成立與有解問題,可按如下規(guī)則轉(zhuǎn)化:一般地,已知函數(shù),(1)若,,總有成立,故;(2)若,,有成立,故;(3)若,,有成立,故;(4)若,,有,則的值域是值域的子集18、(1)見解析;(2).【解析】(1)由,所以,從而得解;(2)由,所以的最小值即為的最小值,過點O作直線的垂線求垂足即可.【詳解】(1)證明:設(shè)點的坐標為則由,∴即動點在定直線上(2)由,所以即為所以最小值時,取到最小值.又點在直線上,所以此時直線的方程為,聯(lián)立直線解得點.19、(1);(2)當時,扇形面積最大值.【解析】(1)利用扇形弧長公式直接求解即可;(2)根據(jù)扇形周長可得,代入扇形面積公式,由二次函數(shù)最值可確定結(jié)果.【小問1詳解】,扇形的弧長;【小問2詳解】扇形的周長,,扇形面積,則當,,即當時,扇形面積最大值.20、(1),,(2),,【解析】(1)先由三角函數(shù)的定義得到,再利用同角三角函數(shù)基本關(guān)系進行求解;(2)利用誘導公式進行化簡求值.【小問1詳解】解:由三角函數(shù)定義,得,由得,又因為為第二象限角,所以,則;【小問2詳解】解:由誘導公式,得:,則,.21、(1)函數(shù)在區(qū)間是遞增函數(shù);證明見解析;(2)或【解析】(1)由奇函數(shù)定義建立方程組可求出,再用定義法證明單調(diào)性即可;(2)根據(jù)復合函數(shù)的單調(diào)性,分類討論的單調(diào)性,結(jié)合函數(shù)的單調(diào)性研究最值即可求解【詳解】(1)∵是奇函數(shù),∴,又,且,所以,,經(jīng)檢驗,滿足題意得,所以函數(shù)在區(qū)間是遞增函數(shù)證明如下:且,所以有:由,得,,又,故,所以,即,所以函數(shù)在區(qū)間是遞增函數(shù)(2)令,由(1)可得在區(qū)間遞增函數(shù),①當時,是減函數(shù),故當取得最小值時,(且)取得最大值2,在區(qū)間的最小值為,故的最大值是,∴②當時,是增函數(shù),故當取得最大值時,(且)取得最大值2,在區(qū)間的最大值為,故的最大值是,∴或22、(1)(2)【解析】(1)利用列舉法求解,先列出取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版泥工施工環(huán)保評估及監(jiān)測服務(wù)合同2篇
- 中小企業(yè)綠色環(huán)保生產(chǎn)技術(shù)改造2025年實施合同
- 二零二五年度新型農(nóng)民合作社成員入社合同范本
- 二零二五年度摩托車行業(yè)技術(shù)交流合作合同
- 山東省17地市2013一模語文分解-文學類文本閱讀
- 2025年度個人獨資企業(yè)股權(quán)買賣合同模板
- 二零二五年度真石漆施工項目風險評估與管理合同2篇
- 二零二五年度程序員入職心理健康關(guān)愛與支持合同4篇
- 二零二五年度儲藏煤場租賃合同附煤炭儲存環(huán)境影響評估4篇
- 二零二五版某某金融資產(chǎn)證券化項目補充合同3篇
- 四川省宜賓市2023-2024學年八年級上學期期末義務(wù)教育階段教學質(zhì)量監(jiān)測英語試題
- 價值醫(yī)療的概念 實踐及其實現(xiàn)路徑
- 2024年中國華能集團燃料有限公司招聘筆試參考題庫含答案解析
- 《紅樓夢》中的男性形象解讀
- 安全生產(chǎn)技術(shù)規(guī)范 第49部分:加油站 DB50-T 867.49-2023
- 《三國演義》中的語言藝術(shù):詩詞歌賦的應(yīng)用
- 腸外營養(yǎng)液的合理配制
- 消防安全教育培訓記錄表
- 2023年河南省新鄉(xiāng)市鳳泉區(qū)事業(yè)單位招聘53人高頻考點題庫(共500題含答案解析)模擬練習試卷
- 2023年小升初簡歷下載
- 廣府文化的奇葩
評論
0/150
提交評論