版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
專題14相似三角形模型★知識點1:A字型相似【基本模型】①如圖,在中,點D在上,點E在上,,則,.②模型拓展1:斜交A字型條件:,圖2結(jié)論:;③模型拓展2:如圖,∠ACD=∠B?△ADC∽△ACB?.典例分析【例1】(2022·上?!ぞ拍昙墝n}練習(xí))如圖,在△ABC中,點D在邊AB上,點E、點F在邊AC上,且DEBC,.(1)求證:DFBE;(2)如且AF=2,EF=4,AB=6.求證△ADE∽△AEB.【答案】(1)見詳解;(2)見詳解【分析】(1)由題意易得,則有,進而問題可求證;(2)由(1)及題意可知,然后可得,進而可證,最后問題可求證.【詳解】解:(1)∵DEBC,∴,∵,∴,∴DFBE;(2)∵AF=2,EF=4,∴由(1)可知,,AE=6,∵AB=6,∴,∴,∴,∵∠A=∠A,∴△ADE∽△AEB.【點睛】本題主要考查相似三角形的判定,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.【例2】(2021·江蘇·九年級自主招生)在中,,D為上一點,過D作DEBC交于點E,連接.設(shè),求的取值范圍.【答案】【分析】作AG⊥BC于F點,交DE于G點,設(shè)AD=x,首先結(jié)合相似三角形的判定與性質(zhì)推出和的值,然后結(jié)合面積公式進行列式,得出二次函數(shù)解析式,最后結(jié)合二次函數(shù)的性質(zhì)以及自變量的取值范圍進行判斷即可.【詳解】解:如圖所示,作AG⊥BC于F點,交DE于G點,設(shè)AD=x,∵DE∥BC,∴△ADE∽△ABC,∴,∴,∴,整理得:,∵點D在AB上,,∴,,∴拋物線的開口向下,且當時,取得最大值為,當和時,均有,綜上分析,的取值范圍是.【點睛】本題考查相似三角形的判定與性質(zhì),二次函數(shù)的性質(zhì)運用等,掌握相似三角形的判定與性質(zhì)推出相關(guān)線段的比例,以及熟練運用二次函數(shù)的性質(zhì)分析是解題關(guān)鍵.【即學(xué)即練】1.(2021秋·安徽安慶·九年級安慶市石化第一中學(xué)??计谥校﹫D,,點H在BC上,AC與BD交于點G,AB=2,CD=3,求GH的長.【答案】【分析】根據(jù)平行線分線段成比例定理,由,可證△CGH∽△CAB,由性質(zhì)得出,由,可證△BGH∽△BDC,由性質(zhì)得出,將兩個式子相加,即可求出GH的長.【詳解】解:∵,∴∠A=∠HGC,∠ABC=∠GHC,∴△CGH∽△CAB,∴,∵,∴∠D=∠HGB,∠DCB=∠GHB,△BGH∽△BDC,∴,∴,∵AB=2,CD=3,∴,解得:GH=.【點睛】本題考查了相似三角形的判定和性質(zhì),平行線性質(zhì),熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.2.(2022秋·北京房山·九年級統(tǒng)考期中)如圖,AD與BC交于O點,,,,,求CD的長.【答案】1.5【分析】由,可得出,利用相似三角形的性質(zhì)可得出,代入,,,即可求出CD的長.【詳解】解:∵AD與BC交于O點,∴.∵,∴.∴.∵,,,∴.【點睛】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握相似三角形對應(yīng)邊成比例列式.★知識點2:8字型相似【基本模型】①如圖1,AB∥CD?△AOB∽△COD?;②如圖2,∠A=∠D?△AOB∽△DOC?.③模型拓展:如圖,∠A=∠C?△AJB∽△CJD?.典例分析【例1】(2021秋·江西吉安·九年級統(tǒng)考期末)如圖,在正方形中,點E在對角線上,,過點E的直線分別交,于點M,N.(1)當時,的長為________,________;(2)已知.①若,求此時的長;②當E,F(xiàn)為的三等分點,點P在正方形的邊上時,是否存在滿足的情況?如果存在,請通過分析指出這樣的點的個數(shù);如果不存在,說明理由.【答案】(1);;(2)①;②存在,有8個.【分析】解:(1)由四邊形ABCD為正方形,得到△ACD為等腰直角三角形,在Rt△ACD中由勾股定理求得CD的長,由MN=CD,可以求出MN的長,由AD∥BC得到△AEM∽△CEN.(2)①過點E作EG⊥AD于點G.由AM∥CN,得到△AEM∽△CEN.得到對應(yīng)邊成比例,由勾股定理求出GM的長,再由AM=AG+GM可求出.②畫出圖形,過點F作點F關(guān)于BC的對稱點M,連接FM交BC于點N,連接EM,根據(jù)點M與點F關(guān)于BC對稱,計算出PE+PF的最小值,與PE+PF=9比較.得出BC上存在兩個點,同理在線段AB,AD,CD上都存在兩個點使PE+PF=9.【詳解】解:(1),∵四邊形ABCD為正方形∴△ACD為等腰直角三角形,則,在Rt△ACD中有AD=AC,AD2+DC2=AC2,∵AC=12,解得:AD=CD=6,又∵MN⊥BC,CD⊥BC∴MN∥CD,且MN=CD,即MN=DC=6,又∵AD∥BC∴△AEM∽△CEN.(2)①如圖,過點E作于點G.∵,∴.∴.∵,,∴,.∵,∴.∴.∴.②存在,這樣的點有8個.如圖,過點F作點F關(guān)于的對稱點M,連接交于點N,連接,∵點E,F(xiàn)將對角線三等分,且,∴,.∵點M與點F關(guān)于對稱,∴,.∴.∴.則在線段上存在點N到點E和點F的距離之和最小為.∴在線段上,點N的左右兩邊各有一個點P使.同理在線段,,上都存在兩個點使.即共有8個點P滿足.【點睛】本題考查正方形的性質(zhì),相似三角形的判定及性質(zhì)、線段和的最值問題等,體現(xiàn)了邏輯推理、直觀想象核心素養(yǎng).【例2】(2022·上?!ぞ拍昙墝n}練習(xí))如圖,在平行四邊形ABCD中,BC=8,點E、F是對角線BD上的兩點,且BE=EF=FD,AE的延長線交BC于點G,GF的延長線交AD于點H.(1)求HD的長;(2)設(shè)的面積為a,求四邊形AEFH的面積.(用含a的代數(shù)式表示)【答案】(1)2;(2)【分析】(1)根據(jù)平行四邊形的性質(zhì)得,根據(jù)相似三角形的判定得,,由BE=EF=FD可得出,,根據(jù)相似三角形的性質(zhì)即可求解;(2)由BE=EF可得與的面積相等,根據(jù)相似三角形的面積比等于相似比的平方可得與的值,-即可得四邊形AEFH的面積.【詳解】解:(1)∵平行四邊形ABCD,BC=8,∴,=8,∴,,∴,,∵BE=EF=FD,∴,,∴BG=AD=4,HD=BG,∴HD=2;(2)∵BE=EF,∴=a,∴,∵,,,,∴,,∴四邊形AEFH的面積=-=.【點睛】本題考查平行四邊形的性質(zhì),相似三角形的判定和性質(zhì),熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.即學(xué)即練1.(2021秋·重慶·九年級校聯(lián)考期末)如圖與交于,且.(1)求證:∽.(2)若,,,求的長.【答案】(1)證明見解析;(2).【分析】(1)根據(jù)相似三角形的判定解答即可;(2)因為∽,根據(jù)相似三角形的性質(zhì)可知,代入數(shù)據(jù)解答即可.【詳解】證明:(1),,∽;(2)∽,,,,,,,.【點睛】本題考查了相似三角形的判定和性質(zhì),掌握相似三角形的性質(zhì)是解題的關(guān)鍵.2.(2022秋·全國·八年級專題練習(xí))定義:如圖,若點P在三角形的一條邊上,且滿足,則稱點P為這個三角形的“理想點”.(1)如圖①,若點D是的邊AB的中點,,,試判斷點D是不是的“理想點”,并說明理由;(2)如圖②,在中,,,,若點D是的“理想點”,求CD的長.【答案】(1)為的理想點,理由見解析(2)或【分析】(1)由已知可得,從而,,可證點是的“理想點”;(2)由是的“理想點”,分三種情況:當在上時,是邊上的高,根據(jù)面積法可求長度;當在上時,,對應(yīng)邊成比例即可求長度;不可能在上.(1)解:點是的“理想點”,理由如下:是中點,,,,,,,,,,,點是的“理想點”;(2)①在上時,如圖:是的“理想點”,或,當時,,,,即是邊上的高,當時,同理可證,即是邊上的高,在中,,,,,,,②,,有,“理想點”不可能在邊上,③在邊上時,如圖:是的“理想點”,,又,,,即,,綜上所述,點是的“理想點”,的長為或.【點睛】本題主要考查了相似三角形、勾股定理等知識,解題的關(guān)鍵是理解“理想點”的定義.★知識點3母子型相似【基本模型】如圖為斜“A”字型基本圖形.當時,,則有..如圖所示,當E點與C點重合時,為其常見的一個變形,即子母型.當時,,則有.典例分析【例1】(2021秋·福建漳州·九年級校聯(lián)考期中)如圖,在△ABC中,D是BC上的點,E是AD上一點,且,∠BAD=∠ECA.(1)求證:AC2=BC?CD;(2)若AD是△ABC的中線,求的值.【答案】(1)證明見解析;(2)【分析】(1)首先利用相似三角形的判定得出,得,進而求出,再利用相似三角形的性質(zhì)得出答案即可;(2)由可證,進而得出,再由(1)可證,由此即可得出線段之間關(guān)系.【詳解】(1)證明:,,,,,,,.(2)解:,,,,AD是△ABC的中線,,,即:,∴.【點睛】此題主要考查了相似三角形的判定與性質(zhì)以及重心的性質(zhì)等知識,根據(jù)已知得出是解題關(guān)鍵.【例2】(2023·全國·九年級專題練習(xí))如圖,已知矩形的兩條對角線相交于點O,過點作分別交、于點、.(1)求證:;(2)連接,若.求證:.【答案】(1)見解析;(2)見解析【分析】(1)易證△BEG∽△AEB,利用對應(yīng)邊成比例即可解決;(2)由(1)的結(jié)論及BE=CE,易證明△CEG∽△AEC,從而可得∠CGE=∠ACE,由OB=OC,可得.【詳解】(1)∵四邊形ABCD是矩形∴∠ABE=90°∴∠ABG+∠EBG=90°∵∴∠ABG+∠BAG=90°∴∠EBG=∠BAG∴Rt△BEG∽Rt△AEB∴∴(2)由(1)有:∵BE=CE∴∴∵∠CEG=∠AEC∴△CEG∽△AEC∴∠CGE=∠ACE∵四邊形ABCD是矩形∴AC=BD∴OB=OC∴∠DBC=∠ACE∴【點睛】本題考查了矩形的性質(zhì),相似三角形的判定與性質(zhì),相似三角形的判定與性質(zhì)是解題的關(guān)鍵.即學(xué)即練1.(2023春·江蘇·八年級統(tǒng)考期末)如圖,在△ABC中,點D在BC邊上,點E在AC邊上,且AD=AB,∠DEC=∠B.(1)求證:△AED∽△ADC;(2)若AE=1,EC=3,求AB的長.【答案】(1)見解析;(2)2【分析】(1)利用三角形外角的性質(zhì)及∠DEC=∠ADB可得出∠ADE=∠C,結(jié)合∠DAE=∠CAD即可證出△AED∽△ADC;(2)利用相似三角形的性質(zhì)可求出AD的長,再結(jié)合AD=AB即可得出AB的長.【詳解】解:(1)證明:∵∠DEC=∠DAE+∠ADE,∠ADB=∠DAE+∠C,∠DEC=∠ADB,∴∠ADE=∠C.又∵∠DAE=∠CAD,∴△AED∽△ADC.(2)∵△AED∽△ADC,∴,即,∴AD=2或AD=﹣2(舍去).又∵AD=AB,∴AB=2【點睛】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是:(1)利用“兩角對應(yīng)相等,兩三角形相似”證出△AED∽△ADC;(2)利用相似三角形的性質(zhì),求出AD的長.2.(2022秋·全國·九年級專題練習(xí))如圖1,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,點D,E分別為AC,BC的中點.△CDE繞點C順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤360°),記直線AD與直線BE的交點為點P.(1)如圖1,當α=0°時,AD與BE的數(shù)量關(guān)系為______,AD與BE的位置關(guān)系為______;(2)當0°<α≤360°時,上述結(jié)論是否成立?若成立,請僅就圖2的情形進行證明;若不成立,請說明理由;(3)△CDE繞點C順時針旋轉(zhuǎn)一周,請直接寫出運動過程中P點運動軌跡的長度和P點到直線BC距離的最大值.【答案】(1)AD=BE,AD⊥BE(2)結(jié)論仍然成立,證明見解析(3)P點運動軌跡的長度是π;P點到直線BC距離的最大值是【分析】(1)分別求出AD、BE的長即可解答;(2)先證明△BCE∽△ACD,可得=,∠CBO=∠CAD即可解答;(3)利用銳角三角函數(shù)可求∠EBC=30°,由弧長公式可求P點運動軌跡的長度,由直角三角形的性質(zhì)可求P點到直線BC距離的最大值即可.【詳解】(1)解:在Rt△ABC中,∠C=90°,∠A=30°,BC=1,∴AC=BC=,AB=2BC=2,AD⊥BE∵點D,E分別為AC,BC的中點∴AD=CD=AC=,BE=EC=BC=∴AD=BE.故答案為:AD=BE,AD⊥BE.(2)解:結(jié)論仍然成立,理由如下:∵AC=,BC=1,CD=,EC=,∴,=,∴,∵△CDE繞點C順時針旋轉(zhuǎn),∴∠BCE=∠ACD,∴△BCE∽△ACD,∴=,∠CBO=∠CAD,∴AD=BE,∵∠CBO+∠BOC=90°,∴∠CAD+∠AOP=90°,∴∠APO=90°,∴BE⊥AD.(3)解:∵∠APB=90°,
∴點P在以AB為直徑的圓上,如圖3,取AB的中點G,作⊙G,以點C為圓心,CE為半徑作⊙C,當BE是⊙C切線時,點P到BC的距離最大,過點P作PH⊥BC,交BC的延長線于H,連接GP,∵BE是⊙C切線,∴CE⊥BE,∵=,∴∠EBC=30°,
∴∠GBP=30°,
∵GB=GP,∴∠GBP=∠GPB=30°,
∴∠BGP=120°,∵點P的運動軌跡為點C→點P→點C→點B→點C,∴P點運動軌跡的長度=×2=π,∵∠ABP=30°,BP⊥AP,∴AP=AB=1,BP=AP=,∵∠CBP=30°,PH⊥BH,∴PH=BP=.
∴P點到直線BC距離的最大值.【點睛】本題是幾何變換綜合題,主要考查了直角三角形的性質(zhì)、相似三角形的判定和性質(zhì)、旋轉(zhuǎn)的性質(zhì)、銳角三角函數(shù)等知識點,靈活應(yīng)用相關(guān)知識是解答本題的關(guān)鍵.★知識點4手拉手型相似【基本模型】①如圖,若△ABC∽△ADE,則△ABD∽△ACE.[來源:Zxxk.Com]②如圖所示,和都是等腰直角三角形,的延長線與相交于點P,則,且相似比為,與的夾角為.總結(jié):旋轉(zhuǎn)相似型中由公共旋轉(zhuǎn)頂點、一點及其旋轉(zhuǎn)后的對應(yīng)點組成的三角形與由公共旋轉(zhuǎn)頂點、另一點及其旋轉(zhuǎn)后的對應(yīng)點組成的三角形相似.③如圖所示,,則,,且.典例分析【例1】(2022·山東煙臺·統(tǒng)考中考真題)
(1)【問題呈現(xiàn)】如圖1,△ABC和△ADE都是等邊三角形,連接BD,CE.求證:BD=CE.(2)【類比探究】如圖2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.連接BD,CE.請直接寫出的值.(3)【拓展提升】如圖3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.連接BD,CE.①求的值;②延長CE交BD于點F,交AB于點G.求sin∠BFC的值.【答案】(1)見解析(2)(3)①;②【分析】(1)證明△BAD≌△CAE,從而得出結(jié)論;(2)證明△BAD∽△CAE,進而得出結(jié)果;(3)①先證明△ABC∽△ADE,再證得△CAE∽△BAD,進而得出結(jié)果;②在①的基礎(chǔ)上得出∠ACE=∠ABD,進而∠BFC=∠BAC,進一步得出結(jié)果.【詳解】(1)證明:∵△ABC和△ADE都是等邊三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:∵△ABC和△ADE都是等腰直角三角形,,∠DAE=∠BAC=45°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD∽△CAE,;(3)解:①,∠ABC=∠ADE=90°,∴△ABC∽△ADE,∴∠BAC=∠DAE,,∴∠CAE=∠BAD,∴△CAE∽△BAD,;②由①得:△CAE∽△BAD,∴∠ACE=∠ABD,∵∠AGC=∠BGF,∴∠BFC=∠BAC,∴sin∠BFC.【點睛】本題考查了等腰三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識,解決問題的關(guān)鍵是熟練掌握“手拉手”模型及其變形.【例2】(2023·全國·九年級專題練習(xí))觀察猜想(1)如圖1,在等邊中,點M是邊上任意一點(不含端點B、C),連接,以為邊作等邊,連接,則與的數(shù)量關(guān)系是______.(2)類比探究如圖2,在等邊中,點M是延長線上任意一點(不含端點C),(1)中其它條件不變,(1)中結(jié)論還成立嗎?請說明理由.(3)拓展延伸如圖3,在等腰中,,點M是邊上任意一點(不含端點B、C),連接,以為邊作等腰,使頂角.連按.試探究與的數(shù)量關(guān)系,并說明理由.【答案】(1)(2)成立(3)【分析】(1)利用可證明,繼而得出結(jié)論;(2)也可以通過證明,得出結(jié)論,和(1)的思路完全一樣.(3)首先得出,從而判定,得到,根據(jù),,得到,從而判定,得出結(jié)論.【詳解】(1)證明:、是等邊三角形,,,,,在和中,,,.(2)解:結(jié)論仍成立;理由如下:、是等邊三角形,,,,,在和中,,,.(3)解:;理由如下:,,∴,又∵,,∴,,又,,,,.【點睛】本題是三角形綜合題,考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是仔細觀察圖形,找到全等(相似)的條件,利用全等(相似)的性質(zhì)證明結(jié)論.即學(xué)即練1.(2023·遼寧朝陽·校聯(lián)考三模)如圖,和是有公共頂點直角三角形,,點P為射線,的交點.(1)如圖1,若和是等腰直角三角形,求證:;(2)如圖2,若,問:(1)中的結(jié)論是否成立?請說明理由.(3)在(1)的條件下,,,若把繞點A旋轉(zhuǎn),當時,請直接寫出的長度【答案】(1)見解析;(2)成立,理由見解析;(3)PB的長為或.【分析】(1)由條件證明△ABD≌△ACE,即可得∠ABD=∠ACE,可得出∠BPC=90°,進而得出BD⊥CP;(2)先判斷出△ADB∽△AEC,即可得出結(jié)論;(3)分為點E在AB上和點E在AB的延長線上兩種情況畫出圖形,然后再證明△PEB∽△AEC,最后依據(jù)相似三角形的性質(zhì)進行證明即可.【詳解】解:(1)證明:如圖,∵∠BAC=∠DAE=90°,∴∠BAE+∠CAE=∠BAD+∠BAE,即∠BAD=∠CAE.∵和是等腰直角三角形,∴,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ACF+∠AFC=90°,∴∠ABP+∠BFP=90°.∴∠BPF=90°,∴BD⊥CP;(2)(1)中結(jié)論成立,理由:在Rt△ABC中,∠ABC=30°,∴AB=AC,在Rt△ADE中,∠ADE=30°,∴AD=AE,∴∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△ADB∽△AEC.∴∠ABD=∠ACE同(1)得;(3)解:∵和是等腰直角三角形,∴,①當點E在AB上時,BE=AC-AE=1.∵∠EAC=90°,∴CE=.同(1)可證△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴∴.∴PB=.②當點E在BA延長線上時,BE=5.∵∠EAC=90°,∴CE=5.同(1)可證△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴.∴.∴PB=.綜上所述,PB的長為或.【點睛】此題主要考查的是旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)和判定、相似三角形的性質(zhì)和判定,證明得△PEB∽△AEC是解題的關(guān)鍵.2.(2023春·山東泰安·八年級統(tǒng)考期末)(1)問題如圖1,在四邊形中,點P為上一點,當時,求證:.(2)探究若將角改為銳角(如圖2),其他條件不變,上述結(jié)論還成立嗎?說明理由.(3)應(yīng)用如圖3,在中,,,以點A為直角頂點作等腰.點D在上,點E在上,點F在上,且,若,求的長.【答案】(1)見解析;(2)成立;理由見解析;(3)5【分析】(1)由可得,即可證到,然后運用相似三角形的性質(zhì)即可解決問題;(2)由可得,即可證到,然后運用相似三角形的性質(zhì)即可解決問題;(3)證明,求出,再證,可求,進而解答即可.【詳解】解:(1)證明:如圖1,,,,又,;(2)結(jié)論仍成立;理由:如圖2,,又,,,,又,,;(3),,,是等腰直角三角形
是等腰直角三角形又即解得.【點睛】本題考查相似三角形的綜合題,三角形的相似,正切值的求法,能夠通過構(gòu)造角將問題轉(zhuǎn)化為一線三角是解題的關(guān)鍵.★知識點5K字型相似【基本模型】(1)“三垂直”模型:如圖1,∠B=∠D=∠ACE=90°,則△ABC∽△CDE.(2)“一線三等角”模型:如圖2,∠B=∠ACE=∠D,則△ABC∽△CDE.特別地,連接AE,若C為BD的中點,則△ACE∽△ABC∽△CDE.補充:其他常見的一線三等角圖形典例分析【例1】(2022春·上?!て吣昙墝n}練習(xí))等邊△ABC邊長為6,P為BC上一點,含30°、60°的直角三角板60°角的頂點落在點P上,使三角板繞P點旋轉(zhuǎn).(1)如圖1,當P為BC的三等分點,且PE⊥AB時,判斷△EPF的形狀;(2)在(1)問的條件下,F(xiàn)E、PB的延長線交于點G,如圖2,求△EGB的面積;(3)在三角板旋轉(zhuǎn)過程中,若CF=AE=2,(CF≠BP),如圖3,求PE的長.【答案】(1)等邊三角形(2)(3)4【分析】(1)要證三角形EPF是等邊三角形,已知了∠EPF=60°,主要再證得PE=PF即可,可通過證三角形PBE和PFC全等來得出結(jié)論,再證明全等過程中,可通過證明FP⊥BC和BE=PC來實現(xiàn);(2)由(1)不難得出∠CFG=90°,那么在△CFG中,有∠C的度數(shù),可以根據(jù)CF的長求出GC的長,從而求出GB的長,下面的關(guān)鍵就是求GB邊上的高,過E作EH⊥BC,那么EH就是所求的高,在直角△BEP中,有BP的長,有∠ABC的度數(shù),可以求出BE、EP的長,再根據(jù)三角形面積的不同表示方法求出EH的長,這樣有了底和高就能求出△GBE的面積;(3)由相似三角形的判定定理得出△BPE∽△CFP,設(shè)BP=x,則CP=6﹣x,由相似三角形的對應(yīng)邊成比例可求出x的值,再根據(jù)勾股定理求出PE的值即可.【詳解】(1)∵PE⊥AB,∠B=60°,因此直角三角形PEB中,,∴∠BPE=30°,∵∠EPF=60°,∴FP⊥BC,在△BEP和△CPF中,,∴△BEP≌△CPF,∴EP=PF,∵∠EPF=60°,∴△EPF是等邊三角形.(2)過E作EH⊥BC于H,由(1)可知:FP⊥BC,,在三角形FCP中,∠PFC=90°﹣∠C=30°,∵∠PFE=60°,∴∠GFC=90°,直角三角形FGC中,∠C=60°,CF=4,∴GC=2CF=8,∴GB=GC﹣BC=2,直角三角形BEP中∠EBP=60°,BP=4,∴PE=2,BE=2,∴EH=BE?PE÷BP=,∴S△GBE=;(3)∵在BPE中,∠B=60°,∴∠BEP+∠BPE=120°,∵∠EPF=60°,∴∠BPE+∠FPC=120°,∴∠BEP=∠FPC,又∵∠B=∠C,∴△BPE∽△CFP,∴,設(shè)BP=x,則CP=6﹣x.∴=,解得:x=2或4.當x=2時,在△△BEP中,∠B=60°,BE=4,BP=2,過E作EH⊥BC于H,則EH=BE?sin∠B=2,BH=2,∴PH=0,即P與H重合,與CF≠BP矛盾,故x=2不合題意,舍去;當x=4時,在△BEP中,∠B=60°,BE=4,BP=4,則△BEP是等邊三角形,∴PE=4.故PE=4.【點睛】本題主要考查了全等三角形的判定和等邊三角形的性質(zhì)以及相似三角形的判定與性質(zhì),注意對全等三角形和等邊三角形的應(yīng)用.【例2】.(2023春·安徽淮南·九年級校聯(lián)考階段練習(xí))已知△ABC和△DCE中,AB=AC,DC=DE,BF=EF,點B,C,E都在同一直線上,且△ABC和△DCE在該直線同側(cè).(1)如圖①,若∠BAC=∠CDE=90°,請猜想線段AF與DF之間的數(shù)量關(guān)系和位置關(guān)系,并證明你的猜想;(2)如圖②,若∠BAC=60°,∠CDE=120°,請直接寫出線段AF與DF之間的數(shù)量關(guān)系和位置關(guān)系;(3)如圖③,若∠BAC=α,∠CDE=180°﹣α,且BC>CE,請直接寫出線段AF與DF之間的數(shù)量關(guān)系和位置關(guān)系(用含α的式子表示).【答案】(1)AF=DF,AF⊥DF,證明見解析;(2),證明見解析;(3).【分析】(1)如圖①中,結(jié)論:AF=DF,AF⊥DF.證明△AHF≌△FJD(SAS),可得結(jié)論;(2)如圖②中,結(jié)論:.證明△AHF∽△FJD,可得結(jié)論;(3)如圖③中,結(jié)論:,證明方法類似(2).【詳解】解:(1)如圖①中,結(jié)論:AF=DF,AF⊥DF.理由:過點A作AH⊥BC于H,過點D作DJ⊥EC于J.∵AB=AC,DC=DE,∠BAC=∠CDE=90°,∴BH=CH,CJ=JE,∴AH=BH=CH,DJ=CJ=JE,∵BF=FE,∴HJ=BF=EF,∴BH=FJ=AH,F(xiàn)H=JE=DJ,∵∠AHF=∠FJD=90°,∴△AHF≌△FJD(SAS),∴AF=FD,∠HAF=∠DFJ,∵∠FAH+∠AFH=90°,∴∠AFH+∠DFJ=90°,∴∠AFD=90°,即AF⊥DF;(2)如圖②中,結(jié)論:.理由:過點A作AH⊥BC于H,過點D作DJ⊥EC于J.∵AB=AC,∠BAC=60°,∴△ABC是等邊三角形,∴BH=CH,,∵DC=DE,∠CDE=120°,∴CJ=JE,∠DEC=∠DCE=30°,∴,∵BF=FE,∴HJ=BF=EF,∴BH=FJ,HF=JE,∴,∴,∵∠AHF=∠FJD=90°,∴△AHF∽△FJD,∴,∠HAF=∠DFJ,∵∠FAH+∠AFH=90°,∴∠AFH+∠DFJ=90°,∴∠AFD=90°,即AF⊥DF,∴,AF⊥DF;(3)如圖③中,結(jié)論:,理由:過點A作AH⊥BC于H,過點D作DJ⊥EC于J.∵AB=AC,∠BAC=α,∴BH=CH,,∵DC=DE,∠CDE=180°-α,∴CJ=JE,,∵BF=FE,∴HJ=BF=EF,∴BH=FJ,HF=JE,∴,∴,∵∠AHF=∠FJD=90°,∴△AHF∽△FJD,∴,∠HAF=∠DFJ,∵∠FAH+∠AFH=90°,∴∠AFH+∠DFJ=90°,∴∠AFD=90°,即AF⊥DF,∴,AF⊥DF.【點睛】本題屬于三角形綜合題,考查了等邊三角形的性質(zhì),等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會正確尋找全等三角形或相似三角形解決問題.即學(xué)即練1.(2020秋·浙江臺州·九年級天臺實驗中學(xué)校考階段練習(xí))【問題情境】如圖①,在中,,,點為中點,連結(jié),點為的延長線上一點,過點且垂直于的直線交的延長線于點.易知BE與CF的數(shù)量關(guān)系.【探索發(fā)現(xiàn)】如圖②,在中,,,點為中點,連結(jié),點為的延長線上一點,過點且垂直于的直線交的延長線于點.【問題情境】中的結(jié)論還成立嗎?請說明理由.【類比遷移】如圖③,在等邊中,,點是中點,點是射線上一點(不與點、重合),將射線繞點逆時針旋轉(zhuǎn)交于點.當時,______.【答案】問題情境:;探索發(fā)現(xiàn):成立,見解析;類比遷移:或【分析】問題情境:根據(jù)等腰直角三角形的性質(zhì),證明即可得;探索發(fā)現(xiàn):與圖①類似,證明即可;類比遷移:根據(jù)等邊三角形的性質(zhì)得到∠A=∠B=60°,求得∠BDF=∠AED,設(shè)CE=x,則CF=2x,分兩種情況討論:點E在線段AC上,點E在AC的延長線上,證明,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】問題情境:,證明如下:∵在中,,,點為中點,∴,∴∵∴∴在和中,∴∴探索發(fā)現(xiàn):成立,理由:∵在中,為中點,∴,又∵,∴,∴,∴,∴∵,∴,∴,∴,在和中,∴∴類比遷移:當點E在線段AC上時,如圖③,∵是等邊三角形,,點是中點,∴,,設(shè),則,,∵是的外角,,∴即∴又∵∴∴∴∴解得,(大于4,不符合題意,舍去)當點E在線段AC的延長線時,如圖:設(shè),則,,同理可得∴解得,(不符合題意,舍去)綜上所述,或.故答案為:或.【點睛】本題考查全等三角形與相似三角形的綜合問題,運用等腰直角三角形的性質(zhì)尋找全等條件,熟練掌握相似三角形中的一線三等角模型是解題的關(guān)鍵.2.(2019秋·吉林長春·九年級校聯(lián)考期末)如圖,在△ABC中,∠C=90°,AC=BC,AB=8.點P從點A出發(fā),以每秒2個單位長度的速度沿邊AB向點B運動.過點P作PD⊥AB交折線AC﹣CB于點D,以PD為邊在PD右側(cè)作正方形PDEF.設(shè)正方形PDEF與△ABC重疊部分圖形的面積為S,點P的運動時間為t秒(0<t<4).(1)當點D在邊AC上時,正方形PDEF的邊長為(用含t的代數(shù)式表示).(2)當點E落在邊BC上時,求t的值.(3)當點D在邊AC上時,求S與t之間的函數(shù)關(guān)系式.(4)作射線PE交邊BC于點G,連結(jié)DF.當DF=4EG時,直接寫出t的值.【答案】(1)2t;(2);(3);(4)t=或【分析】(1)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得:∠A=∠ADP=45°,即AP=DP=2t;(2)由等腰直角三角形的性質(zhì)和正方形的性質(zhì)可得:AB=AP+PF+FB,即2t+2t+2t=8,可求t的值;(3)分兩種情況討論,根據(jù)重疊部分的圖形的形狀,可求S與t之間的函數(shù)關(guān)系式;(4)分點E在△ABC內(nèi)部和△ABC外部兩種情況討論,根據(jù)平行線分線段成比例,可求t的值.【詳解】(1)∵∠C=90°,AC=BC,∴∠A=45°=∠B,且DP⊥AB,∴∠A=∠ADP=45°,∴AP=DP=2t,故答案為2t,(2)如圖,∵四邊形DEFP是正方形,∴DP=DE=EF=PF,∠DPF=∠EFP=90°,∵∠A=∠B=45°,∴∠A=∠ADP=∠B=∠BEF=45°,∴AP=DP=2t=EF=FB=PF,∵AB=AP+PF+FB,∴2t+2t+2t=8,∴t=;(3)當0<t≤時,正方形PDEF與△ABC重疊部分圖形的面積為正方形PDEF的面積,即S=DP2=4t2,當<t≤2時,如圖,正方形PDEF與△ABC重疊部分圖形的面積為五邊形PDGHF的面積,∵AP=DP=PF=2t,∴BF=8﹣AP﹣PF=8﹣4t,∵BF=HF=8﹣4t,∴EH=EF﹣HF=2t﹣(8﹣4t)=6t﹣8,∴S=S正方形DPFE﹣S△GHE,∴S=4t2﹣×(6t﹣8)2=﹣14t2+48t﹣32,綜上所述,S與t之間的函數(shù)關(guān)系式為.(4)如圖,當點E在△ABC內(nèi)部,設(shè)DF與PE交于點O,∵四邊形PDEF是正方形,∴DF=PE=2PO=2EO,∠DFP=45°,∴∠DFP=∠ABC=45°,∴DF∥BC,∴,∵DF=4EG,∴設(shè)EG=a,則DF=4a=PE,PO=2a=EO,∴PG=5a,∴,∴,∴t=,如圖,當點E在△ABC外部,設(shè)DF與PE交于點O,∵四邊形PDEF是正方形,∴DF=PE=2PO=2EO,∠DFP=45°,∴∠DFP=∠ABC=45°,∴DF∥BC,∴,∵DF=4EG,∴設(shè)EG=a,則DF=4a=PE,PO=2a=EO,∴PG=3a,∵,∴,∴t=,綜上所述:t=或.【點睛】本題是四邊形的綜合題,主要考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、平行線分線段成比例和重疊部分的面積等知識.先求特殊位置時對應(yīng)的t值,做到不重不漏,再利用數(shù)形結(jié)合的思想,確定重疊部分圖形的形狀是解題的關(guān)鍵.★知識點6三角形內(nèi)接矩形【基本模型】由之前的基本模型(A型或AX型)推導(dǎo)出來的。結(jié)論:AH⊥GF,△AGF∽△ABC,典例分析【例1】(2022秋·上海嘉定·九年級??茧A段練習(xí))已知,如圖,在中,,,,矩形的邊在的邊上,頂點、分別在邊、上.
(1)設(shè),用含的代數(shù)式表示的長,則_______;(2)當矩形是正方形時,求的長.【答案】(1)(2)【分析】(1)先證為直角三角形,再由矩形的性質(zhì)及兩個三角形有一個公共角可證得,從而可得含的比例式,將相關(guān)線段用含的式子表示出來并代入比例式,求解即可;(2)由矩形的性質(zhì)可得,可證得,從而可得含有的比例式,用含的式子表示出,根據(jù)正方形的邊長相等可得關(guān)于的方程,求解即可.【詳解】(1)在中,,,,為直角三角形,,四邊形為矩形,,,,又,,,,,,,故答案為:;(2)四邊形為矩形,,,,,,,,,當矩形是正方形時,,,解得,的長為.【點睛】本題考查相似三角形的判定與性質(zhì)、勾股定理的逆定理、矩形和正方形的性質(zhì)及一元一次方程在實際問題中的應(yīng)用,熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.【例2】(2022秋·上海青浦·九年級??茧A段練習(xí))如圖,一塊三角形鐵板,,高,把這塊鐵板截成一塊矩形,使邊在上,頂點G、H分別在邊上,矩形長與寬之比為,求截得的矩形的周長.【答案】【分析】先由矩形的性質(zhì)得到,,,再證明四邊形是矩形,得到,設(shè),則,證明,得到,解方程求出,由此即可得到答案.【詳解】解:∵四邊形是矩形,∴,,,∵是的高,∴,∴四邊形是矩形,∴,設(shè),則,∵,即,∴,∴,∴,解得,∴,∴截得的矩形的周長為.【點睛】本題主要考查相似三角形的性質(zhì)與判定,矩形的性質(zhì)與判定,靈活運用所學(xué)知識是解題的關(guān)鍵.即學(xué)即練1.(2023·吉林白山·校聯(lián)考一模)如圖,光源P在水平橫桿AB的上方,照射橫桿AB得到它在平地上的影子為CD(點P、A、C在一條直線上,點P、B、D在一條直線上),不難發(fā)現(xiàn)AB//CD.已知AB=1.5m,CD=4.5m,點P到橫桿AB的距離是1m,則點P到地面的距離等于m.【答案】3【分析】作PF⊥CD于點F,利用AB∥CD,推導(dǎo)△PAB∽△PCD,再利用相似三角形對應(yīng)高之比是相似比求解即可.【詳解】解:如圖,過點P作PF⊥CD于點F,交AB于點E,∵AB∥CD,∴△PAB∽△PCD,PE⊥AB,∵△PAB∽△PCD,∴,(相似三角形對應(yīng)高之比是相似比)即:,解得PF=3.故答案為:3.【點睛】本題考查相似三角形的判定與性質(zhì),掌握相似三角形對應(yīng)高之比是相似比是解題的關(guān)鍵.2.(2022春·九年級課時練習(xí))如圖,已知三角形鐵皮的邊,邊上的高,要剪出一個正方形鐵片,使、在上,、分別在、上,則正方形的邊長.【答案】【分析】設(shè)AM交GF于H點,然后根據(jù)相似三角形的判定與性質(zhì)求解即可.【詳解】解:如圖,設(shè)高AM交GF于H點,∵四邊形DEFG為正方形,∴GF∥DE,即:GF∥BC,∴AH⊥GF,△AGF∽△ABC,∴,設(shè)正方形的邊長為,∴,解得:,故答案為:.【點睛】本題考查相似三角形的判定與性質(zhì),理解相似三角形的基本性質(zhì)是解題關(guān)鍵.1.(2021·山東臨沂·三模)如圖,在△ABC中,DE∥BC,若AE=2,EC=3,則△ADE與△ABC的面積之比為(
)A.4:25 B.2:3 C.4:9 D.2:5【答案】A【分析】根據(jù)相似三角形的判定定理得到△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方計算,得到答案.【詳解】解:∵AE=2,EC=3,∴AC=AE+EC=5,∵DEBC,∴△ADE∽△ABC,∴,故選:A.【點睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.2.(2023·全國·九年級專題練習(xí))如圖,,,分別交于點G,H,則下列結(jié)論中錯誤的是(
)A. B. C. D.【答案】D【分析】根據(jù)平行線分線段成比例和相似三角形的性質(zhì)與判定,進行逐一判斷即可.【詳解】解:∵AB∥CD,∴,∴A選項正確,不符合題目要求;∵AE∥DF,∴∠CGE=∠CHD,∠CEG=∠D,∴△CEG∽△CDH,∴,∴,∵AB∥CD,∴,∴,∴,∴,∴B選項正確,不符合題目要求;∵AB∥CD,AE∥DF,∴四邊形AEDF是平行四邊形,∴AF=DE,∵AE∥DF,∴,∴;∴C選項正確,不符合題目要求;∵AE∥DF,∴△BFH∽△BAG,∴,∵AB>FA,∴∴D選項不正確,符合題目要求.故選D.【點睛】本題考查了平行線分線段成比例定理,相似三角形的性質(zhì)和判定的應(yīng)用,能根據(jù)定理得出比例式是解此題的關(guān)鍵.3.(2022秋·九年級單元測試)如圖,在平行四邊形ABCD中,E為邊AD的中點,連接AC,BE交于點F.若△AEF的面積為2,則△ABC的面積為()A.8 B.10 C.12 D.14【答案】C【分析】先利用平行四邊形的性質(zhì)得,AD=BC,由可判斷△AEF∽△CBF,根據(jù)相似三角形的性質(zhì)得,然后根據(jù)三角形面積公式得,則.【詳解】∵平行四邊形ABCD∴,AD=BC∵E為邊AD的中點∴BC=2AE∵∴∠EAC=∠BCA又∵∠EFA=∠BFC∴△AEF∽△CBF如圖,過點F作FH⊥AD于點H,F(xiàn)G⊥BC于點G,則,∴,∵△AEF的面積為2∴故選C.【點睛】本題考查了相似三角形的性質(zhì),屬于同步基礎(chǔ)題.4.(2022春·九年級課時練習(xí))如圖,在平行四邊形ABCD中,點E是AD上一點,,連接BE交AC于點G,延長BE交CD的延長線于點F,則的值為()A. B. C. D.【答案】A【分析】先根據(jù)平行四邊形的性質(zhì)得到AB∥CD,則可判斷△ABG∽△CFG,△ABE∽△DFE,于是根據(jù)相似三角形的性質(zhì)和AE=2ED即可得結(jié)果.【詳解】解:∵四邊形ABCD為平行四邊形,∴AB∥CD,∴△ABG∽△CFG,∴=∵△ABE∽△DFE,∴=,∵AE=2ED,∴AB=2DF,∴=,∴=.故選:A.【點睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定和性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的判定和性質(zhì)進行解題.5.(2020秋·貴州貴陽·九年級??茧A段練習(xí))如圖,正方形ABCD中,E、F分別在邊CD,AD上,于點G,若BC=4,AF=1,則CE的長為(
)
A.3 B. C. D.【答案】A【分析】過D做于點H,由正方形ABCD的性質(zhì),通過證明和計算得到,再通過證明從而求得CE的長.【詳解】如下圖,過D做于點H
∴∵正方形ABCD∴且∵∴∴又∵∴∴∵∴
又∵正方形ABCD∴∴∵于點G∴∴∴∵∴∵且∴∴∴故選:A.方法二:∵∠BEC+∠FCD=90°,∠DFC+∠FCD=90°,∴∠BEC=∠DFC,又∵∠CDF=∠BCE,BC=CD,∴△BCE≌△CDF,∴CE=DF=4-1=3;【點睛】本題考查了三角形勾股定理、相似三角形、正方形的知識;求解的關(guān)鍵是熟練掌握正方形、相似三角形的性質(zhì),從而完成求解.6.(2019秋·九年級課時練習(xí))如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC于點F,連接DF,給出下列四個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S△ABF:S四邊形CDEF=2:5,其中正確的結(jié)論有(
)A.1個 B.2個 C.3個 D.4個【答案】D【分析】①根據(jù)四邊形ABCD是矩形,BE⊥AC,可得∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF∽△CAB,故①正確;②根據(jù)點E是AD邊的中點,以及AD∥BC,得出△AEF∽△CBF,根據(jù)相似三角形對應(yīng)邊成比例,可得CF=2AF,故②正確;③過D作DM∥BE交AC于N,得到四邊形BMDE是平行四邊形,求出BM=DE=BC,得到CN=NF,根據(jù)線段的垂直平分線的性質(zhì)可得結(jié)論,故③正確;④根據(jù)△AEF∽△CBF得到EF與BF的比值,以及AF與AC的比值,據(jù)此求出S△AEF=S△ABF,S△ABF=S矩形ABCD,可得S四邊形CDEF=S△ACD-S△AEF=S矩形ABCD,即可得到S四邊形CDEF=S△ABF,故④正確.【詳解】如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,∴CF=2AF,故②正確,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正確;∵△AEF∽△CBF,∴==,∴S△AEF=S△ABF,S△ABF=S矩形ABCD,∴S△AEF=S矩形ABCD,又∵S四邊形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,∴S△ABF:S四邊形CDEF=2:5,故④正確;故選D.【點睛】本題考查了相似三角形的判定和性質(zhì),矩形的性質(zhì),圖形面積的計算,正確的作出輔助線是解題的關(guān)鍵.7.(2022秋·陜西西安·九年級高新一中校考階段練習(xí))如圖,在Rt△ABC中,∠C=90°,放置邊長分別為3,4,x的三個正方形,則x的值為(
)A.5 B.6 C.7 D.8【答案】C【分析】根據(jù)已知條件可以推出△CEF∽△OME∽△PFN,可得OE:PN=OM:PF,再利用正方形的性質(zhì)把它們的直角邊用含x的表達式表示出來,列方程,解方程即可得到x的值.【詳解】解:如圖,標注字母,∵在Rt△ABC中(∠C=90°),放置邊長分別3,4,x的三個正方形,由正方形可得:同理:∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,結(jié)合正方形的性質(zhì)可得:OE=x-3,PF=x-4,∴(x-3):4=3:(x-4),∴(x-3)(x-4)=12,即,∴x=0(不符合題意,舍去)或x=7.故選:C.【點睛】本題主要考查相似三角形的判定和性質(zhì)、正方形的性質(zhì),解題的關(guān)鍵在于找到相似三角形,用x的表達式表示出對應(yīng)邊.8.(2021秋·重慶渝北·九年級統(tǒng)考期末)如圖,在等邊三角形中,點,分別是邊,上的點.將沿翻折,點正好落在線段上的點處,使得.若,則的長度為(
)A. B. C. D.【答案】A【分析】由是等邊三角形,===60°,由沿DE折疊C落在AB邊上的點F上,,==60°,CD=DF,CE=EF,由AF:BF=1:2,設(shè)AF=m,BF=2m,AB=3m,設(shè)AD=x,CD=DF=,由BE=2,BC=,可得CE=,可證,利用性質(zhì),即,解方程即可【詳解】解:∵是等邊三角形,∴===60°,∵沿DE折疊C落在AB邊上的點F上,∴,∴==60°,CD=DF,CE=EF,∵AF:BF=1:2,設(shè)AF=m,BF=2m,AB=3m,設(shè)=x,=DF=,∵BE=2,BC=,∴CE=,∵=,=60°,∴=120°,=120°,∴=,∵=,∴,∴,即,解得:,使等式有意義,∴=,故選擇:A.【點睛】本題考查等邊三角形性質(zhì)和折疊性質(zhì)以及相似三角形的性質(zhì)和判定,主要考查學(xué)生運用定理進行推理和計算的能力,題目綜合性比較強,有一定的難度.9.(2021秋·江蘇無錫·九年級統(tǒng)考期中)如圖,邊長為10的等邊中,點D在邊上,且,將含角的直角三角板()繞直角頂點D旋轉(zhuǎn),分別交邊于P、Q,連接,當時,的長為(
)A.6 B. C. D.【答案】B【分析】如圖,過點作于,根據(jù)等邊三角形,和含角的直角三角形,易證得,從而求得線段,,,,,,的長度,最后在中利用勾股定理可以求得的長度.【詳解】如圖,過點作于,在等邊中,,,在中,,,∵,∴,,∴,∴,又∵∠A=∠B=60°,∴,
∴,∴在中,,∴,即,∴,∵,∴,∴,已知∴,∴,∴,∴,在中,,∴,∴,∴,∴,而,∴,∴,在中,,∴,即.故選:B.【點睛】本題考查了等邊三角形的性質(zhì),特殊三角函數(shù)值,一線三等角的相似模型,正確找到相似三角形是解題的關(guān)鍵.10.(2023秋·遼寧鐵嶺·九年級統(tǒng)考階段練習(xí))如圖,△ABD中,∠A=90°,AB=6cm,AD=12cm.某一時刻,動點M從點A出發(fā)沿AB方向以1cm/s的速度向點B勻速運動;同時,動點N從點D出發(fā)沿DA方向以2cm/s的速度向點A勻速運動,運動的時間為ts.(1)求t為何值時,△AMN的面積是△ABD面積的;(2)當以點A,M,N為頂點的三角形與△ABD相似時,求t值.【答案】(1),;(2)t=3或【分析】(1)由題意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,根據(jù)三角形的面積公式列出方程可求出答案;(2)分兩種情況,由相似三角形的判定列出方程可求出t的值.【詳解】解:(1)由題意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,∴△AMN的面積=AN?AM=×(12﹣2t)×t=6t﹣t2,∵∠A=90°,AB=6cm,AD=12cm∴△ABD的面積為AB?AD=×6×12=36,∵△AMN的面積是△ABD面積的,∴6t﹣t2=,∴t2﹣6t+8=0,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四年免租金科研機構(gòu)租賃合同規(guī)范文本3篇
- 2025年管道檢測與修復(fù)水管安裝合同樣本3篇
- 2025年酒店布草租賃與智能化管理服務(wù)合同2篇
- 二零二五年度草料種植基地土壤治理合同3篇
- 二零二五年度租賃房屋租賃保證金監(jiān)管服務(wù)合同范本3篇
- 2025年校園體育設(shè)施平整施工合同6篇
- 二零二五年度數(shù)據(jù)中心場地租賃合同及數(shù)據(jù)安全保障與服務(wù)標準3篇
- 二零二五惠州法務(wù)專員招聘與法律知識普及培訓(xùn)合同3篇
- 2024金融機構(gòu)貸款擔保合同
- 二零二四年農(nóng)場自建房產(chǎn)權(quán)交易合同范本3篇
- 跆拳道專業(yè)隊訓(xùn)練計劃書
- DL-T1848-2018220kV和110kV變壓器中性點過電壓保護技術(shù)規(guī)范
- DZ∕T 0213-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 石灰?guī)r、水泥配料類(正式版)
- 食品銷售業(yè)務(wù)員合同
- (中考試題)2024年浙江省紹興市中考數(shù)學(xué)真題試卷解析版
- 國有企業(yè)內(nèi)部審計實施方案
- 部編版語文一年級下冊全冊大單元整體作業(yè)設(shè)計
- 減速機的培訓(xùn)課件
- 六西格瑪-DMAIC-報告
- 老年人護理風險管理
- 蒸壓加氣混凝土制品課件
評論
0/150
提交評論