版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆天津市靜海區(qū)高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知為上的奇函數(shù),,在為減函數(shù).若,,,則a,b,c的大小關(guān)系為A. B.C. D.2.對于實(shí)數(shù)x,“0<x<1”是“x<2”的()條件A.充要 B.既不充分也不必要C.必要不充分 D.充分不必要3.命題“,是4倍數(shù)”的否定為()A.,是4的倍數(shù) B.,不是4的倍數(shù)C.,不是4倍數(shù) D.,不是4的倍數(shù)4.函數(shù)的部分圖象如圖所示,則的值分別是()A. B.C. D.5.集合,,則間的關(guān)系是()A. B.C. D.6.已知,,都是實(shí)數(shù),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.函數(shù)的圖像為()A. B.C. D.8.三條直線l1:ax+by-1=0,l2:2x+(a+2)y+1=0,l3:bx-2y+1=0,若l1,l2都和l3垂直,則a+b等于()A. B.6C.或6 D.0或49.若,,且,則A. B.C. D.10.函數(shù)的部分圖象如圖示,則將的圖象向右平移個單位后,得到的圖象解析式為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知單位向量與的夾角為,向量的夾角為,則cos=_______12.已知函數(shù),對于任意都有,則的值為______________.13.已知函數(shù)為奇函數(shù),則______14.若函數(shù)(其中)在區(qū)間上不單調(diào),則的取值范圍為__________.15.已知圓柱的底面半徑為,高為2,若該圓柱的兩個底面的圓周都在一個球面上,則這個球的表面積為______16.的值為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知向量滿足,.(1)若的夾角為,求;(2)若,求與的夾角.18.已知函數(shù)(1)判斷f(x)的奇偶性,并說明理由;(2)用定義證明f(x)在(1,+∞)上單調(diào)遞增;(3)求f(x)在[-2,-1]上的值域19.在平行四邊形中,過點(diǎn)作的垂線交的延長線于點(diǎn),.連結(jié)交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置.如圖2.證明:直線平面若為的中點(diǎn),為的中點(diǎn),且平面平面求三棱錐的體積.20.已知函數(shù).(1)判斷的奇偶性,并證明;(2)證明:在區(qū)間上單調(diào)遞減.21.素有“天府之國”美稱的四川省成都市,屬于亞熱帶季風(fēng)性濕潤氣候.據(jù)成都市氣象局多年的統(tǒng)計(jì)資料顯示,成都市從1月份到12月份的平均溫(℃)與月份數(shù)(月)近似滿足函數(shù),從1月份到7月份的月平均氣溫的散點(diǎn)圖如下圖所示,且1月份和7月份的平均氣溫分別為成都全年的最低和最高的月平均氣溫.(1)求月平均氣溫(℃)與月份數(shù)(月)的函數(shù)解析式;(2)推算出成都全年月平均氣溫低于但又不低于的是哪些月份.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】由于為奇函數(shù),故為偶函數(shù),且在上為增函數(shù).,所以,故選C.2、D【解析】從充分性和必要性的定義,結(jié)合題意,即可容易判斷.【詳解】若,則一定有,故充分性滿足;若,不一定有,例如,滿足,但不滿足,故必要性不滿足;故“0<x<1”是“x<2”的充分不必要條件.故選:.3、B【解析】根據(jù)特稱量詞命題的否定是全稱量詞命題即可求解【詳解】因?yàn)樘胤Q量詞命題的否定是全稱量詞命題,所以命題“,是4的倍數(shù)”的否定為“,不是4的倍數(shù)”故選:B4、A【解析】根據(jù)的圖象求得,求得,再根據(jù),求得,求得的值,即可求解.【詳解】根據(jù)函數(shù)的圖象,可得,可得,所以,又由,可得,即,解得,因?yàn)?,所?故選:A.5、D【解析】解指數(shù)不等式和一元二次不等式得集合,再判斷各選項(xiàng)【詳解】由題意,或,所以,即故選:D【點(diǎn)睛】本題考查集合的運(yùn)算與集合的關(guān)鍵,考查解一元二次不等式,指數(shù)不等式,掌握指數(shù)函數(shù)性質(zhì)是解題關(guān)鍵6、B【解析】利用充分、必要條件的定義,結(jié)合不等式的性質(zhì)判斷題設(shè)條件間的推出關(guān)系,即可知條件間的充分、必要關(guān)系.【詳解】當(dāng)時,若時不成立;當(dāng)時,則必有成立,∴“”是“”的必要不充分條件.故選:B7、B【解析】首先判斷函數(shù)的奇偶性,再根據(jù)函數(shù)值的特征,利用排除法判斷可得;【詳解】解:因?yàn)椋x域?yàn)?,且,故函?shù)為偶函數(shù),函數(shù)圖象關(guān)于軸對稱,故排除A、D,當(dāng)時,,所以,故排除C,故選:B8、C【解析】根據(jù)相互垂直的兩直線斜率之間的關(guān)系對b分類討論即可得出【詳解】l1,l2都和l3垂直,①若b=0,則a+2=0,解得a=﹣2,∴a+b=﹣2②若b≠0,則1,1,聯(lián)立解得a=2,b=4,∴a+b=6綜上可得:a+b的值為﹣2或6故選C【點(diǎn)睛】本題考查了相互垂直的直線斜率之間的關(guān)系、分類討論方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題9、A【解析】∵,∴2既是方程的解,又是方程的解令a是方程的另一個根,b是方程的另一個根由韋達(dá)定理可得:2×a=6,即a=3,∴2+a=p,∴p=52+b=?6,即b=?8,∴2×b=?16=?q,∴q=16∴p+q=21故選:A10、D【解析】由圖像知A="1,",,得,則圖像向右移個單位后得到的圖像解析式為,故選D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)題意,由向量的數(shù)量積計(jì)算公式可得?、||、||的值,結(jié)合向量夾角計(jì)算公式計(jì)算可得答案【詳解】根據(jù)題意,單位向量,的夾角為,則?1×1×cos,32,3,則?(32)?(3)=92+22﹣9?,||2=(32)2=92+42﹣12?7,則||,||2=(3)2=922﹣6?7,則||,故cosβ.故答案為【點(diǎn)睛】本題主要考查向量的數(shù)量積的運(yùn)算和向量的夾角的計(jì)算,意在考察學(xué)生對這些知識的掌握水平和分析推理能力.12、【解析】由條件得到函數(shù)的對稱性,從而得到結(jié)果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對稱軸.∴f=±2.【點(diǎn)睛】本題考查了正弦型三角函數(shù)的對稱性,注意對稱軸必過最高點(diǎn)或最低點(diǎn),屬于基礎(chǔ)題.13、##【解析】利用奇函數(shù)的性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭瞧婧瘮?shù),所以有,故答案:14、【解析】化簡f(x),結(jié)合正弦函數(shù)單調(diào)性即可求ω取值范圍.【詳解】,x∈,①ω>0時,ωx∈,f(x)在不單調(diào),則,則;②ω<0時,ωx∈,f(x)在不單調(diào),則,則;綜上,ω的取值范圍是.故答案為:.15、【解析】直接利用圓柱的底面直徑,高、球體的直徑構(gòu)成直角三角形其中為斜邊,利用勾股定理求出的值,然后利用球體的表面積公式可得出答案【詳解】設(shè)球的半徑為,由圓柱的性質(zhì)可得,圓柱的底面直徑,高、球體的直徑構(gòu)成直角三角形其中為斜邊,因?yàn)閳A柱的底面半徑為,高為2,所以,,因此,這個球的表面積為,故答案為【點(diǎn)睛】本題主要圓柱的幾何性質(zhì),考查球體表面積的計(jì)算,意在考查空間想象能力以及對基礎(chǔ)知識的理解與應(yīng)用,屬于中等題16、11【解析】進(jìn)行對數(shù)和分?jǐn)?shù)指數(shù)冪的運(yùn)算即可【詳解】原式故答案為:11三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用公式即可求得;(2)利用向量垂直的等價條件以及夾角公式即可求解.【詳解】解:(1)由已知,得,所以,所以.(2)因?yàn)?,所?所以,即,所以.又,所以,即與的夾角為.【點(diǎn)睛】主要考查向量模、夾角的求解,數(shù)量積的計(jì)算以及向量垂直的等價條件的運(yùn)用.屬于基礎(chǔ)題.18、(1)f(x)為奇函數(shù),理由見解析(2)證明見解析(3)[-,-2]【解析】(1)根據(jù)奇偶性的定義判斷;(2)由單調(diào)性的定義證明;(3)由單調(diào)性得值域【小問1詳解】f(x)為奇函數(shù)由于f(x)的定義域?yàn)椋P(guān)于原點(diǎn)對稱,且,所以f(x)為在上的奇函數(shù)(畫圖正確,由圖得出正確結(jié)論,也可以得分)【小問2詳解】證明:設(shè)任意,,有由,得,,即,所以函數(shù)f(x)在(1,+∞)上單調(diào)遞增【小問3詳解】由(1),(2)得函數(shù)f(x)在[-2,-1]上單調(diào)遞增,故f(x)的最大值為,最小值為,所以f(x)在[-2,-1]的值域?yàn)閇-,-2]19、(1)見解析;(2)【解析】(1)在平面圖形內(nèi)找到,則在立體圖形中,可證面.(2)解法一:根據(jù)平面平面,得到平面,得到到平面的距離,根據(jù)平面圖形求出底面平的面積,求得三棱錐的體積.解法二:找到三棱錐的體積與四棱錐的體積之間的關(guān)系比值關(guān)系,先求四棱錐的體積,從而得到三棱錐的體積.【詳解】證明:如圖1,中,所以.所以也是直角三角形,,如圖題2,所以平面.解法一:平面平面,且平面平面,平面,平面.取的中點(diǎn)為,連結(jié)則平面,即為三棱錐的高..解法二:平面平面,且平面平面,平面,平面.為的中點(diǎn),三棱錐的高等于.為的中點(diǎn),的面積是四邊形的面積的,三棱錐的體積是四棱錐的體積的三棱錐的體積為.【點(diǎn)睛】本題考查線面垂直的判定,面面垂直的性質(zhì),以及三棱錐體積的計(jì)算,都是對基礎(chǔ)內(nèi)容的考查,屬于簡單題.20、(1)是偶函數(shù),證明見解析(2)證明見解析【解析】(1)先求定義域,再利用函數(shù)奇偶性的定義證明即可,(2)利用單調(diào)性的定義證明【小問1詳解】為偶函數(shù),證明如下:定義域?yàn)镽,因?yàn)椋允桥己瘮?shù).【小問2詳解】任取,且,則因?yàn)?,所以,所以,即,由函?shù)單調(diào)性定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 托班語言集體課程設(shè)計(jì)
- 服裝搭配課程設(shè)計(jì)
- 2024年離婚協(xié)議更改模板與條件
- 2024年獵頭中介服務(wù)合同模板:行業(yè)精英精準(zhǔn)招聘3篇
- 機(jī)械制造課程設(shè)計(jì)軸支架
- 化工原理課程設(shè)計(jì)上課
- 2024年電影宣傳品設(shè)計(jì)制作合同
- 幼兒徒手運(yùn)動課程設(shè)計(jì)
- 智能硬件課程設(shè)計(jì)
- 托班語言社交課程設(shè)計(jì)
- 汽車4S店6S管理
- 統(tǒng)編版高中語文必修一《故都的秋》《荷塘月色》比較閱讀-課件
- 醫(yī)療集團(tuán)組織架構(gòu)
- 電光調(diào)制實(shí)驗(yàn)報告
- 外研版二年級上冊英語試卷
- 收款憑證(自制Word打印版)
- 鑄鐵閘門檢驗(yàn)標(biāo)準(zhǔn)
- 某公司項(xiàng)目部質(zhì)量管理體系及制度
- 關(guān)于開展全員營銷活動的實(shí)施方案
- 碩士開題報告和文獻(xiàn)綜述模板-北京理工大學(xué)研究生院
- 俄語視聽說基礎(chǔ)教程1
評論
0/150
提交評論