![北京市順義區(qū)楊鎮(zhèn)一中2023-2024學(xué)年數(shù)學(xué)高一上期末檢測模擬試題含解析_第1頁](http://file4.renrendoc.com/view10/M02/26/27/wKhkGWV2SKGAV96jAAIGnnQueqk945.jpg)
![北京市順義區(qū)楊鎮(zhèn)一中2023-2024學(xué)年數(shù)學(xué)高一上期末檢測模擬試題含解析_第2頁](http://file4.renrendoc.com/view10/M02/26/27/wKhkGWV2SKGAV96jAAIGnnQueqk9452.jpg)
![北京市順義區(qū)楊鎮(zhèn)一中2023-2024學(xué)年數(shù)學(xué)高一上期末檢測模擬試題含解析_第3頁](http://file4.renrendoc.com/view10/M02/26/27/wKhkGWV2SKGAV96jAAIGnnQueqk9453.jpg)
![北京市順義區(qū)楊鎮(zhèn)一中2023-2024學(xué)年數(shù)學(xué)高一上期末檢測模擬試題含解析_第4頁](http://file4.renrendoc.com/view10/M02/26/27/wKhkGWV2SKGAV96jAAIGnnQueqk9454.jpg)
![北京市順義區(qū)楊鎮(zhèn)一中2023-2024學(xué)年數(shù)學(xué)高一上期末檢測模擬試題含解析_第5頁](http://file4.renrendoc.com/view10/M02/26/27/wKhkGWV2SKGAV96jAAIGnnQueqk9455.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北京市順義區(qū)楊鎮(zhèn)一中2023-2024學(xué)年數(shù)學(xué)高一上期末檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若方程表示圓,則實數(shù)的取值范圍是A. B.C. D.2.已知函數(shù)滿足∶當(dāng)時,,當(dāng)時,,若,且,設(shè),則()A.沒有最小值 B.的最小值為C.的最小值為 D.的最小值為3.若-3和1是函數(shù)y=loga(mx2+nx-2)的兩個零點(diǎn),則y=logn|x|的圖象大致是()A. B.C. D.4.已知命題,則為()A. B.C. D.5.已知函數(shù)是定義在R上的周期為2的偶函數(shù),當(dāng)時,,則A. B.C. D.6.在同一直角坐標(biāo)系中,函數(shù)和(且)的圖像可能是()A. B.C. D.7.基本再生數(shù)R0與世代間隔T是新冠肺炎流行病學(xué)基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0=1+rT.有學(xué)者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天8.設(shè),則a,b,c大小關(guān)系為()A. B.C. D.9.(程序如下圖)程序的輸出結(jié)果為A.3,4 B.7,7C.7,8 D.7,1110.已知全集,,,則集合A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.把物體放在冷空氣中冷卻,如果物體原來的溫度是θ1,空氣的溫度是θ0℃,那么t后物體的溫度θ(單位:)可由公式(k為正常數(shù))求得.若,將55的物體放在15的空氣中冷卻,則物體冷卻到35所需要的時間為___________.12.已知,,若與的夾角是銳角,則的取值范圍為______13.若,其中,則的值為______14.設(shè)函數(shù),若,則的取值范圍是________.15.設(shè)函數(shù);若方程有且僅有1個實數(shù)根,則實數(shù)b的取值范圍是__________16.某醫(yī)藥研究所研發(fā)一種新藥,如果成年人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量y(微克)與時間t(時)之間近似滿足如圖所示的關(guān)系.若每毫升血液中含藥量不低于0.5微克時,治療疾病有效,則服藥一次治療疾病的有效時間為___________小時.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)求在上的最小值;(2)記集合,,若,求的取值范圍.18.空氣質(zhì)量指數(shù)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量指數(shù)的值越高,就代表空氣污染越嚴(yán)重,其分級如下表:空氣質(zhì)量指數(shù)空氣質(zhì)量類別優(yōu)良輕度污染中度污染重度污染嚴(yán)重污染現(xiàn)分別從甲、乙兩個城市月份監(jiān)測的空氣質(zhì)量指數(shù)的數(shù)據(jù)中隨機(jī)抽取天的數(shù)據(jù),記錄如下:甲乙(1)估計甲城市月份某一天空氣質(zhì)量類別為良的概率;(2)分別從甲、乙兩個城市的統(tǒng)計數(shù)據(jù)中任取一個,求這兩個數(shù)據(jù)對應(yīng)的空氣質(zhì)量類別都為輕度污染的概率;(3)記甲城市這天空氣質(zhì)量指數(shù)的方差為.從甲城市月份空氣質(zhì)量指數(shù)的數(shù)據(jù)中再隨機(jī)抽取一個記為,若,與原有的天的數(shù)據(jù)構(gòu)成新樣本的方差記為;若,與原有的天的數(shù)據(jù)構(gòu)成新樣本的方差記為,試比較、、的大?。ńY(jié)論不要求證明)19.某地區(qū)每年各個月份的月平均最高氣溫近似地滿足周期性規(guī)律,因此第個月的月平均最高氣溫可近似地用函數(shù)來刻畫,其中正整數(shù)表示月份且,例如表示月份,和是正整數(shù),,.統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份的月平均最高氣溫基本相同,月份的月平均最高氣溫為攝氏度,是一年中月平均最高氣溫最低的月份,隨后逐月遞增直到月份達(dá)到最高為攝氏度.(1)求的解析式;(2)某植物在月平均最高氣溫低于攝氏度的環(huán)境中才可生存,求一年中該植物在該地區(qū)可生存的月份數(shù).20.如圖,直三棱柱的底面是邊長為2的正三角形,分別是的中點(diǎn)(1)證明:平面平面;(2)若直線與平面所成的角為,求三棱錐的體積21.計算下列各式的值(1);(2)已知,求
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由二元二次方程表示圓的充要條件可知:,解得,故選A考點(diǎn):圓的一般方程2、B【解析】根據(jù)已知條件,首先利用表示出,然后根據(jù)已知條件求出的取值范圍,最后利用一元二次函數(shù)并結(jié)合的取值范圍即可求解.【詳解】∵且,則,且,∴,即由,∴,又∵,∴當(dāng)時,,當(dāng)時,,故有最小值.故選:B.3、C【解析】運(yùn)用零點(diǎn)的定義和一元二次方程的解法可得【詳解】根據(jù)題意得,解得,∵n=2>1由對數(shù)函數(shù)的圖象得答案為C.故選C【點(diǎn)睛】本題考查零點(diǎn)的定義,一元二次方程的解法4、D【解析】由全稱命題的否定為存在命題,分析即得解【詳解】由題意,命題由全稱命題的否定為存在命題,可得:為故選:D5、A【解析】依題意有.6、B【解析】利用函數(shù)的奇偶性及對數(shù)函數(shù)的圖象的性質(zhì)可得.【詳解】由函數(shù),可知函數(shù)為偶函數(shù),函數(shù)圖象關(guān)于軸對稱,可排除選項AC,又的圖象過點(diǎn),可排除選項D.故選:B.7、B【解析】根據(jù)題意可得,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,根據(jù),解得即可得結(jié)果.【詳解】因為,,,所以,所以,設(shè)在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間為天,則,所以,所以,所以天.故選:B.【點(diǎn)睛】本題考查了指數(shù)型函數(shù)模型的應(yīng)用,考查了指數(shù)式化對數(shù)式,屬于基礎(chǔ)題.8、C【解析】利用有理指數(shù)冪和冪函數(shù)的單調(diào)性分別求得,,的范圍即可得答案【詳解】,,,又在上單調(diào)遞增,,,故選:C9、D【解析】∵變量初始值X=3,Y=4,∴根據(jù)X=X+Y得輸出的X=7.又∵Y=X+Y,∴輸出的Y=11.故選D.10、D【解析】因為A∪B={x|x≤0或x≥1},所以,故選D.考點(diǎn):集合的運(yùn)算.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】將數(shù)據(jù),,,代入公式,得到,解指數(shù)方程,即得解【詳解】將,,,代入得,所以,,所以,即.故答案為:212、【解析】利用坐標(biāo)表示出和,根據(jù)夾角為銳角可得且與不共線,從而構(gòu)造出不等式解得結(jié)果.【詳解】由題意得:,解得:又與不共線,解得:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)向量夾角求解參數(shù)范圍問題,易錯點(diǎn)是忽略兩向量共線的情況.13、;【解析】因為,所以點(diǎn)睛:三角函數(shù)求值三種類型(1)給角求值:關(guān)鍵是正確選用公式,以便把非特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù).(2)給值求值:關(guān)鍵是找出已知式與待求式之間的聯(lián)系及函數(shù)的差異.①一般可以適當(dāng)變換已知式,求得另外函數(shù)式的值,以備應(yīng)用;②變換待求式,便于將已知式求得的函數(shù)值代入,從而達(dá)到解題的目的.(3)給值求角:實質(zhì)是轉(zhuǎn)化為“給值求值”,先求角的某一函數(shù)值,再求角的范圍,確定角.14、【解析】當(dāng)時,由,求得x0的范圍;當(dāng)x0<2時,由,求得x0的取值范圍,再把這兩個x0的取值范圍取并集,即為所求.【詳解】當(dāng)時,由,求得x0>3;當(dāng)x0<2時,由,解得:x0<-1.綜上所述:x0的取值范圍是.故答案為:15、【解析】根據(jù)分段函數(shù)的解析式作出函數(shù)圖象,將方程有且僅有1個實數(shù)根轉(zhuǎn)化為函數(shù)與直線有一個交點(diǎn),然后數(shù)形結(jié)合即可求解.【詳解】作出函數(shù)的圖象,如圖:結(jié)合圖象可得:,故答案為:.16、【解析】根據(jù)圖象求出函數(shù)的解析式,然后由已知構(gòu)造不等式,解不等式即可得解.【詳解】當(dāng)時,函數(shù)圖象是一個線段,由于過原點(diǎn)與點(diǎn),故其解析式為,當(dāng)時,函數(shù)的解析式為,因為在曲線上,所以,解得,所以函數(shù)的解析式為,綜上,,由題意有或,解得,所以,所以服藥一次治療疾病有效時間為個小時,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)【解析】(1)按對稱軸與區(qū)間的相對位置關(guān)系,分三種情況討論求最小值;(2)分與解不等式,再分析的情況即可求解.【小問1詳解】解:(1)由,拋物線開口向上,對稱軸為,在上的最小值需考慮對稱軸與區(qū)間的位置關(guān)系.(i)當(dāng)時,;(ii)當(dāng)時,;(ⅲ)當(dāng)時,【小問2詳解】(2)解不等式,即,可得:當(dāng)時,不等式的解為;當(dāng)時,不等式的解為.(i)當(dāng)時,要使不等式的解集與有交集,由得:,此時對稱軸為,∴只需,即,得.所以此時(ii)當(dāng)時,要使不等式的解集與有交集,由得:,此時對稱軸為,∴只需,即,得.所以此時無解.綜上所述,的取值范圍.18、(1);(2);(3)【解析】(1)甲城市這天內(nèi)空氣質(zhì)量類別為良有天,利用頻率估計概率的思想可求得結(jié)果;(2)列舉出所有的基本事件,并利用古典概型的概率公式可求得結(jié)果;(3)根據(jù)題意可得出、、的大小關(guān)系.【詳解】(1)甲城市這天內(nèi)空氣質(zhì)量類別為良的有天,則估計甲城市月份某一天空氣質(zhì)量類別為良的概率為;(2)由題意,分別從甲、乙兩個城市的統(tǒng)計數(shù)據(jù)中任取一個,所有的基本事件有:、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、,共個,用表示“這兩個數(shù)據(jù)對應(yīng)的空氣質(zhì)量類別都為輕度污染”,則事件包含的基本事件有:、、、,共個基本事件,所以,;(3)【點(diǎn)睛】方法點(diǎn)睛:求解古典概型概率的問題有如下方法:(1)列舉法;(2)列表法;(3)樹狀圖法;(4)排列組合數(shù)的應(yīng)用.19、(1),,為正整數(shù)(2)一年中該植物在該地區(qū)可生存的月份數(shù)是【解析】(1)先利用月平均氣溫最低、最高的月份求出周期和及值,再利用最低氣溫和最高氣溫求出、值,即得到所求函數(shù)的解析式;(2)先判定函數(shù)的單調(diào)性,再代值確定符合要求的月份即可求解.【小問1詳解】解:因為月份的月平均最高氣溫最低,月份的月平均最高氣溫最高,所以最小正周期.所以.所以,.因為,所以.因為月份的月平均最高氣溫為攝氏度,月份的月平均最高氣溫為攝氏度,所以,.所以,.所以的解析式是,,為正整數(shù).【小問2詳解】解:因為,,為正整數(shù).所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.因為某植物在月平均最高氣溫低于攝氏度的環(huán)境中才可生存,且,,所以該植物在1月份,2月份,3月份可生存.又,所以該植物在11月份,12月份也可生存.即一年中該植物在該地區(qū)可生存的月份數(shù)是.20、(Ⅰ)見解析;(Ⅱ).【解析】(1)由面面垂直的判定定理很容易得結(jié)論;(2)所求三棱錐底面積容易求得,是本題轉(zhuǎn)化為求三棱錐的高,利用直線與平面所成的角為,作出線面角,進(jìn)而可求得的值,則可得的長試題解析:(1)如圖,因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 親子教育項目居間合同樣本
- 電影院裝修服務(wù)合同范本
- 農(nóng)藥購銷合同樣本
- 三農(nóng)村公共環(huán)境治理體系建設(shè)指南
- 生產(chǎn)管理實務(wù)操作流程詳解
- 網(wǎng)絡(luò)教育技術(shù)運(yùn)用與發(fā)展趨勢研究報告與指導(dǎo)書
- 鋼化玻璃采購合同書
- 購買豆腐的合同
- 2025年陽江b2貨運(yùn)上崗證模擬考試
- 小學(xué)三年級上冊口算練習(xí)500題
- 學(xué)前教育普及普惠質(zhì)量評估幼兒園準(zhǔn)備工作詳解
- 青少年人工智能編程水平測試一級-模擬真題01含答案
- 第十五章《探究電路》復(fù)習(xí)課課件滬科版九年級物理
- 2024年中考物理科技創(chuàng)新題型(教師版)
- 唐山市重點(diǎn)中學(xué)2024-2025學(xué)年全國高考大聯(lián)考信息卷:數(shù)學(xué)試題試卷(3)含解析
- 經(jīng)營性房屋租賃項目 投標(biāo)方案(技術(shù)方案)
- 未成年上班知情協(xié)議書
- 2024年山東藥品食品職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫含答案
- 《行政倫理學(xué)教程(第四版)》課件 張康之 第8-13章 行政組織倫理-技術(shù)時代的行政倫理
- 進(jìn)出潔凈室培訓(xùn)
- 2023-2024學(xué)年高中政治統(tǒng)編版選擇性必修二7-1 立足職場有法寶 課件(34張)
評論
0/150
提交評論